References in zbMATH (referenced in 26 articles )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Tran van Trung: A recursive construction for simple $t$-designs using resolutions (2018)
  2. van Trung, Tran: Simple $t$-designs: a recursive construction for arbitrary $t$ (2017)
  3. Zhou, Junling; Chang, Yanxun: 3-spontaneous emission error designs from $\mathrmPSL(2,q)$ or $\mathrmPGL(2,q)$ (2016)
  4. Braun, Michael; Kohnert, Axel; Östergård, Patric R.J.; Wassermann, Alfred: Large sets of $t$-designs over finite fields (2014)
  5. Emami, M.; Naserian, O.: On the large sets of $t$-designs of size nine (2014)
  6. Araya, Makoto; Harada, Masaaki; Tonchev, Vladimir D.; Wassermann, Alfred: Mutually disjoint designs and new 5-designs derived from groups and codes (2010)
  7. Klin, Mikhail; Pech, Christian; Reichard, Sven; Woldar, Andrew; Ziv-Av, Matan: Examples of computer experimentation in algebraic combinatorics (2010)
  8. Miyamoto, Izumi: A construction of designs on $n+1$ points from multiply homogeneous permutation groups of degree $n$ (2010)
  9. Soicher, Leonard H.: More on block intersection polynomials and new applications to graphs and block designs (2010)
  10. Klin, Mikhail; Reichard, Sven; Woldar, Andrew: Siamese combinatorial objects via computer algebra experimentation (2009)
  11. Huber, Michael: Combinatorial designs for authentication and secrecy codes (2008)
  12. Laue, Reinhard; Wassermann, Alfred: Simple $8$-$(31,12,3080)$, $8$-$(40,12,16200)$ and $8$-$(40,12,16520)$ designs from $\mathrmPSL(3,5)$ and $\mathrmPSL(4,3)$ (2008)
  13. Omidi, G.R.; Pournaki, M.R.; Tayfeh-Rezaie, B.: 3-designs with block size 6 from $\mathrmPSL(2,q)$ and their large sets (2007)
  14. Cameron, P.J.; Maimani, H.R.; Omidi, G.R.; Tayfeh-Rezaie, B.: 3-designs from $\textPSL(2,q)$ (2006)
  15. Khosrovshahi, G.B.; Tayfeh-Rezaie, B.: Large sets of $t$-designs through partitionable sets: a survey (2006)
  16. Ngo Dac Tuan: Hypergraphical $t$-designs (2006)
  17. Haberberger, Evi: Isomorphism classification of incidence structures with the lattice-climbing method using the example of $t$-designs (2004)
  18. Araya, Makoto: More mutually disjoint Steiner systems $S(5,8,24)$ (2003)
  19. Ngo Dac Tuan: Simple non-trivial designs with an arbitrary automorphism group (2002)
  20. Bluskov, Iliya; Magliveras, Spyros S.: On the number of mutually disjoint cyclic designs and large sets of designs (2001)

1 2 next


Further publications can be found at: http://www.mathe2.uni-bayreuth.de/discreta/publications.html