LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a classical molecular dynamics code. LAMMPS can model an ensemble of particles in a liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, or granular systems using a variety of force fields and boundary conditions Homepage: http://lammps.sandia.gov/


References in zbMATH (referenced in 56 articles , 1 standard article )

Showing results 1 to 20 of 56.
Sorted by year (citations)

1 2 3 next

  1. Fu, Szu-Pei P.; Ryham, Rolf; Klöckner, Andreas; Wala, Matt; Jiang, Shidong; Young, Yuan-Nan: Simulation of multiscale hydrophobic lipid dynamics via efficient integral equation methods (2020)
  2. Nejat Pishkenari, Hossein; Golzari, Ali: A temperature-calibrated continuum model for vibrational analysis of the fullerene family using molecular dynamics simulations (2020)
  3. Popovici, Doru Thom; Schatz, Martin D.; Franchetti, Franz; Low, Tze Meng: A flexible framework for multidimensional DFTs (2020)
  4. Wang, Liwei; Chen, Zengsheng; Zhang, Jiafeng; Zhang, Xiwen; Wu, Zhongjun J.: Modeling clot formation of shear-injured platelets in flow by a dissipative particle dynamics method (2020)
  5. You, Huaiqian; Lu, Xinyang; Task, Nathaniel; Yu, Yue: An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems (2020)
  6. Buryachenko, Valeriy A.: Computational homogenization in linear elasticity of peristatic periodic structure composites (2019)
  7. Ni, Tao; Zaccariotto, Mirco; Zhu, Qi-Zhi; Galvanetto, Ugo: Static solution of crack propagation problems in peridynamics (2019)
  8. Sun, Wei; Fish, Jacob: Superposition-based coupling of peridynamics and finite element method (2019)
  9. Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, Weinan E: DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models (2019) arXiv
  10. Zhen Zhang, Dong-Bo Zhang, Tao Sun, Renata Wentzcovitch: phq: a Fortran code to compute phonon quasiparticle properties and dispersions (2019) arXiv
  11. Du, Qiang; Tao, Yunzhe; Tian, Xiaochuan: A peridynamic model of fracture mechanics with bond-breaking (2018)
  12. Yu, Yue; Bargos, Fabiano F.; You, Huaiqian; Parks, Michael L.; Bittencourt, Marco L.; Karniadakis, George E.: A partitioned coupling framework for peridynamics and classical theory: analysis and simulations (2018)
  13. Budarapu, P. R.; Reinoso, J.; Paggi, M.: Concurrently coupled solid shell-based adaptive multiscale method for fracture (2017)
  14. Gu, Xin; Zhang, Qing; Yu, Yangtian: An effective way to control numerical instability of a nonordinary state-based peridynamic elastic model (2017)
  15. Nishawala, Vinesh V.; Ostoja-Starzewski, Martin: Peristatic solutions for finite one- and two-dimensional systems (2017)
  16. Ren, Huilong; Zhuang, Xiaoying; Rabczuk, Timon: Dual-horizon peridynamics: a stable solution to varying horizons (2017)
  17. Shiriaeva, E. F.; Stegailov, V. V.: Hydration structure of (\mathrmNa^+) and (\mathrmCl^-) ions in Tip3P water model (2017)
  18. Blais, Bruno; Lassaigne, Manon; Goniva, Christoph; Fradette, Louis; Bertrand, François: Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing (2016)
  19. Gebbie-Rayet, J., Shannon, G., Loeffler, H.H., Laughton, C.A.: Longbow: A Lightweight Remote Job Submission Tool (2016) not zbMATH
  20. Nishawala, Vinesh V.; Ostoja-Starzewski, Martin; Leamy, Michael J.; Demmie, Paul N.: Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments (2016)

1 2 3 next