nauty

graph-theoretic program NAUTY: nauty is a program for computing automorphism groups of graphs and digraphs. It can also produce a canonical labelling. nauty is written in a portable subset of C, and runs on a considerable number of different systems. There is a small suite of programs called gtools included in the package. For example, geng can generate non-isomorphic graphs very quickly. There are also generators for bipartite graphs, digraphs, and multigraphs.

This software is also referenced in ORMS.


References in zbMATH (referenced in 549 articles , 1 standard article )

Showing results 1 to 20 of 549.
Sorted by year (citations)

1 2 3 ... 26 27 28 next

  1. Araya, Makoto; Harada, Masaaki: On the minimum weights of binary linear complementary dual codes (2020)
  2. Arvind, V.; Fuhlbrück, Frank; Köbler, Johannes; Verbitsky, Oleg: On Weisfeiler-Leman invariance: subgraph counts and related graph properties (2020)
  3. Bernstein, Daniel Irving; Farnsworth, Cameron; Rodriguez, Jose Israel: The algebraic matroid of the finite unit norm tight frame (funtf) variety (2020)
  4. Bikov, Aleksandar; Nenov, Nedyalko: On the independence number of ((3,3))-Ramsey graphs and the Folkman number (F_e(3,3;4)) (2020)
  5. Bright, Curtis; Cheung, Kevin; Stevens, Brett; Roy, Dominique; Kotsireas, Ilias; Ganesh, Vijay: A nonexistence certificate for projective planes of order ten with weight 15 codewords (2020)
  6. Brown, Jason I.; Cameron, Ben: Maximum modulus of independence roots of graphs and trees (2020)
  7. Chudnovsky, Maria; Goedgebeur, Jan; Schaudt, Oliver; Zhong, Mingxian: Obstructions for three-coloring graphs without induced paths on six vertices (2020)
  8. Danan, Eiran; Falcón, Raúl M.; Kotlar, Dani; Marbach, Trent G.; Stones, Rebecca J.: Refining invariants for computing autotopism groups of partial Latin rectangles (2020)
  9. Erskine, Grahame; Griggs, Terry; Širáň, Jozef: On the upper embedding of symmetric configurations with block size 3 (2020)
  10. Falcón, Raúl M.; Stones, Rebecca J.: Enumerating partial Latin rectangles (2020)
  11. Gebhardt, Volker; Tawn, Stephen: Constructing unlabelled lattices (2020)
  12. Ghorbani, Ebrahim; Kamali, Sara; Khosrovshahi, Gholamreza B.; Krotov, Denis: On the volumes and affine types of trades (2020)
  13. Goedgebeur, Jan; Meersman, Barbara; Zamfirescu, Carol T.: Graphs with few Hamiltonian cycles (2020)
  14. Gomes, Guilherme de C. M.; Groshaus, Marina; Lima, Carlos V. G. C.; dos Santos, Vinicius F.: Intersection graph of maximal stars (2020)
  15. Guan, Y.; Shi, M. J.; Krotov, D. S.: Steiner triple systems of order 21 with a transversal subdesign (\mathrmTD(3, 6)) (2020)
  16. Gyürki, Štefan; Klin, Mikhail; Ziv-Av, Matan: The Paulus-Rozenfeld-Thompson graph on 26 vertices revisited and related combinatorial structures (2020)
  17. Hojny, Christopher: Packing, partitioning, and covering symresacks (2020)
  18. Holt, Derek; Royle, Gordon: A census of small transitive groups and vertex-transitive graphs (2020)
  19. Joswig, Michael; Panizzut, Marta; Sturmfels, Bernd: The Schläfli Fan (2020)
  20. Junttila, Tommi; Karppa, Matti; Kaski, Petteri; Kohonen, Jukka: An adaptive prefix-assignment technique for symmetry reduction (2020)

1 2 3 ... 26 27 28 next