ABINIT

ABINIT is a package whose main program allows one to find the total energy, charge density and electronic structure of systems made of electrons and nuclei (molecules and periodic solids) within Density Functional Theory (DFT), using pseudopotentials and a planewave basis. ABINIT also includes options to optimize the geometry according to the DFT forces and stresses, or to perform molecular dynamics simulations using these forces, or to generate dynamical matrices, Born effective charges, and dielectric tensors. Excited states can be computed within the Time-Dependent Density Functional Theory (for molecules), or within Many-Body Perturbation Theory (the GW approximation). (Source: http://www.psc.edu/)


References in zbMATH (referenced in 20 articles )

Showing results 1 to 20 of 20.
Sorted by year (citations)

  1. Motamarri, Phani; Iyer, Mrinal; Knap, Jaroslaw; Gavini, Vikram: Higher-order adaptive finite-element methods for orbital-free density functional theory (2012)
  2. Genovese, Luigi; Videau, Brice; Ospici, Matthieu; Deutsch, Thierry; Goedecker, Stefan; Méhaut, Jean-François: Daubechies wavelets for high performance electronic structure calculations: the BigDFT project (2011)
  3. Gonze, Xavier; Boulanger, Paul; C^{o}té, Michel: Theoretical approaches to the temperature and zero-point motion effects on the electronic band structure (2011)
  4. Khoromskij, B.N.; Khoromskaia, V.; Flad, H.-J.: Numerical solution of the Hartree-Fock equation in multilevel tensor-structured format (2011)
  5. Prechtel, M.; Ronda, P.Leiva; Janisch, R.; Hartmaier, A.; Leugering, G.; Steinmann, P.; Stingl, M.: Simulation of fracture in heterogeneous elastic materials with cohesive zone models (2011)
  6. Rohwedder, Thorsten; Schneider, Reinhold: An analysis for the DIIS acceleration method used in quantum chemistry calculations (2011)
  7. Suryanarayana, Phanish; Bhattacharya, Kaushik; Ortiz, Michael: A mesh-free convex approximation scheme for Kohn-sham density functional theory (2011)
  8. Bao, Hua; Ruan, Xiulin: Ab initio calculations of thermal radiative properties: the semiconductor GaAs (2010)
  9. Bekas, C.; Curioni, A.: Very large scale wavefunction orthogonalization in density functional theory electronic structure calculations (2010)
  10. Saad, Yousef; Chelikowsky, James R.; Shontz, Suzanne M.: Numerical methods for electronic structure calculations of materials (2010)
  11. Suryanarayana, Phanish; Gavini, Vikram; Blesgen, Thomas; Bhattacharya, Kaushik; Ortiz, Michael: Non-periodic finite-element formulation of Kohn-Sham density functional theory (2010)
  12. Torrent, Marc; Holzwarth, N.A.W.; Jollet, François; Harris, David; Lepley, Nicholas; Xu, Xiao: Electronic structure packages: two implementations of the projector augmented wave (PAW) formalism (2010)
  13. Kenny, S.D.; Horsfield, A.P.: Plato: A localised orbital based density functional theory code (2009)
  14. Schneider, Reinhold; Rohwedder, Thorsten; Neelov, Alexey; Blauert, Johannes: Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure (2009)
  15. Yuan, Zhe; Gao, Shiwu: Linear response approach to collective electronic excitations of solids and surfaces (2009)
  16. Hunsicker, Eugenie; Nistor, Victor; Sofo, Jorge O.: Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions (2008)
  17. Mostofi, Arash A.; Yates, Jonathan R.; Lee, Young-Su; Souza, Ivo; Vanderbilt, David; Marzari, Nicola: Wannier90: A tool for obtaining maximally-localised Wannier functions (2008)
  18. Cancès, Éric; Le Bris, Claude; Maday, Yvon; Nguyen, Ngoc Cuong; Patera, Anthony T.; Pau, George Shu Heng: Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry (2007)
  19. Le Roux, S.; Zérah, G.: Convergence stability and estimator in orbital free electronic structure calculation on a grid at finite temperature (2007)
  20. Blanco, M.A.; Francisco, E.; Luaña, V.: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model (2004)