cohomCalg

The algorithm for the computation of sheaf cohomologies for line bundles on toric varieties presented in arXiv:1003.5217 [hep-th] ”Cohomology of Line Bundles: A Computational Algorithm” has been implemented in a convenient and high-performance C/C++ application called cohomCalg, which is available for download on this page and subject to future updates and/or optimizations.


References in zbMATH (referenced in 17 articles , 1 standard article )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. Braun, Andreas P.; Brodie, Callum R.; Lukas, Andre: Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds (2018)
  2. Cicoli, Michele; Ciupke, David; Mayrhofer, Christoph; Shukla, Pramod: A geometrical upper bound on the inflaton range (2018)
  3. Bies, Martin; Mayrhofer, Christoph; Weigand, Timo: Gauge backgrounds and zero-mode counting in F-theory (2017)
  4. Cicoli, Michele; Ciupke, David; Diaz, Victor A.; Guidetti, Veronica; Muia, Francesco; Shukla, Pramod: Chiral global embedding of fibre inflation models (2017)
  5. He, Yang-Hui; Jejjala, Vishnu; Pontiggia, Luca: Patterns in Calabi-Yau distributions (2017)
  6. Marchesano, Fernando; Savelli, Raffaele; Schwieger, Sebastian: Compact T-branes (2017)
  7. Anderson, Lara B.; Apruzzi, Fabio; Gao, Xin; Gray, James; Lee, Seung-Joo: A new construction of Calabi-Yau manifolds: generalized CICYs (2016)
  8. Blaszczyk, Michael; Nibbelink, Stefan Groot; Loukas, Orestis; Ruehle, Fabian: Calabi-Yau compactifications of non-supersymmetric heterotic string theory (2015)
  9. Gao, Peng; He, Yang-Hui; Yau, Shing-Tung: Extremal bundles on Calabi-Yau threefolds (2015)
  10. Nibbelink, Stefan Groot; Loukas, Orestis; Ruehle, Fabian: (MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories (2015)
  11. Anderson, Lara B.: Spectral covers, integrality conditions, and heterotic/F-theory duality (2014)
  12. Gao, Xin; Shukla, Pramod: On classifying the divisor involutions in Calabi-Yau threefolds (2013)
  13. Marsano, J.; Clemens, H.; Pantev, T.; Raby, S.; Tseng, H-H.: A global $\mathrmSU(5)$ F-theory model with Wilson line breaking (2013)
  14. Marsano, Joseph; Saulina, Natalia; Schäfer-Nameki, Sakura: Global gluing and $G$-flux (2013)
  15. Blumenhagen, Ralph; Jurke, Benjamin; Rahn, Thorsten: Computational tools for cohomology of toric varieties (2011)
  16. Blumenhagen, Ralph; Jurke, Benjamin; Rahn, Thorsten: Computational tools for cohomology of toric varieties (2011) ioport
  17. Blumenhagen, Ralph; Rahn, Thorsten: Landscape study of target space duality of (0, 2) heterotic string models (2011)