MiniZinc is a medium-level constraint modelling language. It is high-level enough to express most constraint problems easily, but low-level enough that it can be mapped onto existing solvers easily and consistently. It is a subset of the higher-level language Zinc. We hope it will be adopted as a standard by the Constraint Programming community.

References in zbMATH (referenced in 35 articles , 1 standard article )

Showing results 1 to 20 of 35.
Sorted by year (citations)

1 2 next

  1. Gassmann, Horand; Ma, Jun; Martin, Kipp: Communication protocols for options and results in a distributed optimization environment (2016)
  2. Salvagnin, Domenico: Detecting semantic groups in MIP models (2016)
  3. van Iersel, Leo; Kelk, Steven; Lekić, Nela; Linz, Simone: Satisfying ternary permutation constraints by multiple linear orders or phylogenetic trees (2016)
  4. Bilauca, Mihai; Gange, Graeme; Healy, Patrick; Marriott, Kim; Moulder, Peter; Stuckey, Peter J.: Automatic minimal-height table layout (2015)
  5. Björdal, Gustav; Monette, Jean-Noël; Flener, Pierre; Pearson, Justin: A constraint-based local search backend for MiniZinc (2015)
  6. Chu, Geoffrey; Stuckey, Peter J.: Dominance breaking constraints (2015)
  7. Lardeux, Frédéric; Monfroy, Eric; Crawford, Broderick; Soto, Ricardo: Set constraint model and automated encoding into SAT: application to the social golfer problem (2015)
  8. Mears, Christopher; de la Banda, Maria Garcia; Wallace, Mark; Demoen, Bart: A method for detecting symmetries in constraint models and its generalisation (2015)
  9. Chu, Geoffrey; de la Banda, Maria Garcia; Mears, Christopher; Stuckey, Peter J.: Symmetries, almost symmetries, and lazy clause generation (2014)
  10. Francis, Kathryn Glenn; Stuckey, Peter J.: Explaining circuit propagation (2014)
  11. Kelareva, Elena; Tierney, Kevin; Kilby, Philip: CP methods for scheduling and routing with time-dependent task costs (2014)
  12. Prud’homme, Charles; Lorca, Xavier; Douence, Rémi; Jussien, Narendra: Propagation engine prototyping with a domain specific language (2014)
  13. Stojadinović, Mirko; Marić, Filip: meSAT: multiple encodings of CSP to SAT (2014)
  14. Ansótegui, Carlos; Bofill, Miquel; Palahí, Miquel; Suy, Josep; Villaret, Mateu: Solving weighted CSPs with meta-constraints by reformulation into satisfiability modulo theories (2013)
  15. Correia, Marco; Barahona, Pedro: View-based propagation of decomposable constraints (2013)
  16. García, Javier; Florez, José E.; Torralba, Álvaro; Borrajo, Daniel; Linares López, Carlos; García-Olaya, Ángel; Sáenz, Juan: Combining linear programming and automated planning to solve intermodal transportation problems (2013)
  17. Heinz, Stefan; Schulz, Jens; Beck, J.Christopher: Using dual presolving reductions to reformulate cumulative constraints (2013)
  18. Jefferson, Christopher; Jeavons, Peter; Green, Martin J.; van Dongen, M.R.C.: Representing and solving finite-domain constraint problems using systems of polynomials (2013)
  19. Schrijvers, Tom; Tack, Guido; Wuille, Pieter; Samulowitz, Horst; Stuckey, Peter J.: Search combinators (2013)
  20. Schrijvers, Tom; Tack, Guido; Wuille, Pieter; Samulowitz, Horst; Stuckey, Peter J.: An introduction to search combinators (2013)

1 2 next