References in zbMATH (referenced in 61 articles )

Showing results 1 to 20 of 61.
Sorted by year (citations)

1 2 3 4 next

  1. Al-Hinai, Omar; Wheeler, Mary F.; Yotov, Ivan: A generalized mimetic finite difference method and two-point flux schemes over Voronoi diagrams (2017)
  2. Andrew C. Heusser, Kirsten Ziman, Lucy L. W. Owen, Jeremy R. Manning: HyperTools: A Python toolbox for visualizing and manipulating high-dimensional data (2017) arXiv
  3. Benjamin Guedj, Bhargav Srinivasa Desikan: Pycobra: A Python Toolbox for Ensemble Learning and Visualisation (2017) arXiv
  4. Bezanson, Jeff; Edelman, Alan; Karpinski, Stefan; Shah, Viral B.: Julia: a fresh approach to numerical computing (2017)
  5. Bryan W. Weber, Chih-Jen Sung: UConnRCMPy: Python-based data analysis for rapid compression machines (2017) arXiv
  6. Bryan W. Weber, Kyle E. Niemeyer: ChemKED: a human- and machine-readable data standard for chemical kinetics experiments (2017) arXiv
  7. Carmen Moret-Tatay, Daniel Gamermann, Esperanza Navarro-Pardo, Pedro Fernandez de Cordoba: ExGUtils: A python package for statistical analysis with the ex-gaussian probability density (2017) arXiv
  8. Carr, Hamish (ed.); Garth, Christoph (ed.); Weinkauf, Tino (ed.): Topological methods in data analysis and visualization IV. Theory, algorithms, and applications. Selected papers based on the presentations at the TopoInVis workshop, Annweiler, Germany, 2015 (2017)
  9. Chrétien, Stéphane; Darses, Sébastien; Guyeux, Christophe; Clarkson, Paul: On the pinning controllability of complex networks using perturbation theory of extreme singular values. Application to synchronisation in power grids (2017)
  10. Douglas De Rizzo Meneghetti, Plinio Thomaz Aquino Junior: Computerized Adaptive Testing Simulation Through the Package catsim (2017) arXiv
  11. Lema^ıtre, Guillaume; Nogueira, Fernando; Aridas, Christos K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning (2017)
  12. Matthew Wood, Regina Caputo, Eric Charles, Mattia Di Mauro, Jeffrey Magill, Jeremy Perkins for the Fermi-LAT Collaboration: Fermipy: An open-source Python package for analysis of Fermi-LAT Data (2017) arXiv
  13. Myers, A.; Colella, P.; Straalen, B.van: A 4th-order particle-in-cell method with phase-space remapping for the Vlasov-Poisson equation (2017)
  14. Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng Guo, Zhendong Li, Junzi Liu, James McClain, Sandeep Sharma, Sebastian Wouters, Garnet Kin-Lic Chan: The Python-based Simulations of Chemistry Framework (PySCF) (2017) arXiv
  15. Shivashankar, Nithin; Natarajan, Vijay: Efficient software for programmable visual analysis using Morse-Smale complexes (2017)
  16. Stout, Andrew R.: On the auto Igusa-zeta function of an algebraic curve (2017)
  17. Zulkoski, Edward; Bright, Curtis; Heinle, Albert; Kotsireas, Ilias; Czarnecki, Krzysztof; Ganesh, Vijay: Combining SAT solvers with computer algebra systems to verify combinatorial conjectures (2017)
  18. Bailes, Jeffrey Steven: Orbispaces, configurations and quasi-fibrations. (Abstract of thesis) (2016)
  19. Brake, Daniel A.; Hauenstein, Jonathan D.; Liddell, Alan C. jun.: Decomposing solution sets of polynomial systems using derivatives (2016)
  20. Breuer, Alex; Lumsdaine, Andrew: Matrix-free Krylov iteration for implicit convolution of numerically low-rank data (2016)

1 2 3 4 next