References in zbMATH (referenced in 10 articles )

Showing results 1 to 10 of 10.
Sorted by year (citations)

  1. Spreng, Fabian; Vacondio, Renato; Eberhard, Peter; Williams, John R.: An advanced study on discretization-error-based adaptivity in smoothed particle hydrodynamics (2020)
  2. Groenenboom, P.; Cartwright, B.; McGuckin, D.; Amoignon, O.; Mettichi, M. Z.; Gargouri, Y.; Kamoulakos, A.: Numerical studies and industrial applications of the hybrid SPH-FE method (2019)
  3. Kuleshov, A. S.; Shalimova, E. S.; Steindl, Alois: On Hopf bifurcation in the problem of motion of a heavy particle on a rotating sphere: the viscous friction case (2019)
  4. Shadloo, M. S.; Oger, G.; Le Touzé, D.: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges (2016)
  5. Burov, Alexander A.; Shalimova, Ekaterina S.: On the motion of a heavy material point on a rotating sphere (dry friction case) (2015)
  6. Crespo, A. J. C.; Domínguez, J. M.; Rogers, B. D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O.: DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH) (2015)
  7. Shalimova, E. S.: Steady and periodic modes in the problem of motion of a heavy material point on a rotating sphere (the viscous friction case) (2014)
  8. Fleissner, F.; Haag, T.; Hanss, M.; Eberhard, P.: Analysis of granular chute flow based on a particle model including uncertainties (2011)
  9. Kurz, T.; Eberhard, P.; Henninger, C.; Schiehlen, W.: From Neweul to Neweul-M(^2): symbolical equations of motion for multibody system analysis and synthesis (2010)
  10. Fleissner, F.; Haag, T.; Hanss, M.; Eberhard, P.: Uncertainty analysis for a particle model of granular chute flow (2009)


Further publications can be found at: http://www.itm.uni-stuttgart.de/publications/main_files/index_en.php