GeoPDEs

GeoPDEs: a research tool for isogeometric analysis of PDEs GeoPDEs (http://geopdes.sourceforge.net) is a suite of free software tools for applications on isogeometric analysis (IGA), see [T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs, Comput. Methods Appl. Mech. Eng. 194, No. 39–41, 4135–4195 (2005; Zbl 1151.74419)]. Its main focus is on providing a common framework for the implementation of the many IGA methods for the discretization of partial differential equations currently studied, mainly based on B-splines and non-uniform rational B-splines (NURBS), while being flexible enough to allow users to implement new and more general methods with a relatively small effort. This paper presents the philosophy at the basis of the design of GeoPDEs and its relation to a quite comprehensive, abstract definition of IGA.


References in zbMATH (referenced in 21 articles , 1 standard article )

Showing results 1 to 20 of 21.
Sorted by year (citations)

1 2 next

  1. Beirão da Veiga, Lourenço; Buffa, Annalisa; Sangalli, Giancarlo; Vázquez, Rafael: An introduction to the numerical analysis of isogeometric methods (2016)
  2. Beirão da Veiga, Lourenco; Pavarino, Luca F.; Scacchi, Simone; Widlund, O.B.; Zampini, Stefano: BDDC deluxe for isogeometric analysis (2016)
  3. Cazzani, Antonio; Malagù, Marcello; Turco, Emilio: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches (2016)
  4. Charawi, Lara Antonella: Isogeometric overlapping additive Schwarz solvers for the bidomain system (2016)
  5. Sangalli, Giancarlo; Tani, Mattia: Isogeometric preconditioners based on fast solvers for the Sylvester equation (2016)
  6. Pauletti, M.Sebastian; Martinelli, Massimiliano; Cavallini, Nicola; Antolin, Pablo: Igatools: an isogeometric analysis library (2015)
  7. Buffa, A.; Sangalli, G.; Vázquez, R.: Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations (2014)
  8. Chen, De-Xiang; Xu, Zi-Li; Liu, Shi; Feng, Yong-Xin: Least squares finite element method with high continuity NURBS basis for incompressible Navier-Stokes equations (2014)
  9. Gao, Longfei; Calo, Victor M.: Fast isogeometric solvers for explicit dynamics (2014)
  10. Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo: Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models (2014)
  11. Heltai, Luca; Arroyo, Marino; DeSimone, Antonio: Nonsingular isogeometric boundary element method for Stokes flows in 3D (2014)
  12. Malagù, M.; Benvenuti, E.; Duarte, C.A.; Simone, A.: One-dimensional nonlocal and gradient elasticity: assessment of high order approximation schemes (2014)
  13. Mantzaflaris, Angelos; Jüttler, Bert: Exploring matrix generation strategies in isogeometric analysis (2014)
  14. Auricchio, F.; Beirão da Veiga, L.; Kiendl, J.; Lovadina, C.; Reali, A.: Locking-free isogeometric collocation methods for spatial Timoshenko rods (2013)
  15. Beirão da Veiga, L.; Cho, D.; Pavarino, L.F.; Scacchi, S.: Isogeometric Schwarz preconditioners for linear elasticity systems (2013)
  16. Gahalaut, K.P.S.; Kraus, J.K.; Tomar, S.K.: Multigrid methods for isogeometric discretization (2013)
  17. Gahalaut, K.P.S.; Tomar, S.K.; Kraus, J.K.: Algebraic multilevel preconditioning in isogeometric analysis: construction and numerical studies (2013)
  18. Beirão da Veiga, L.; Cho, D.; Pavarino, L.F.; Scacchi, S.: Overlapping Schwarz methods for isogeometric analysis (2012)
  19. Beirão da Veiga, Lourenço; Cho, Durkbin; Sangalli, Giancarlo: Anisotropic NURBS approximation in isogeometric analysis (2012)
  20. Guan, Qiu; Lu, Miaomiao; Wang, Xiaoyan; Jiang, Cao: Solid dynamic models for analysis of stress and strain in human hearts (2012)

1 2 next