Palabos

Fluid flow at your fingertips A software tool for classical CFD, particle-based models and complex physical interaction, Palabos offers a powerful environment for your fluid flow simulations. Through the innovative matrix-based interface, setting up a massively parallel simulation or developing a new physical model has become simpler than ever.


References in zbMATH (referenced in 23 articles , 1 standard article )

Showing results 1 to 20 of 23.
Sorted by year (citations)

1 2 next

  1. Li, Min; Huang, Jingcong; Yang, Zhang; Wang, Yuan; Wu, Changsong; Qu, Lefeng: Calculation of the unit normal vector for wall shear stress in the lattice Boltzmann model (2020)
  2. Takbiri-Borujeni, Ali; Kazemi, Hadi; Nasrabadi, Nasser: A data-driven surrogate to image-based flow simulations in porous media (2020)
  3. Balashov, V. A.; Savenkov, E. B.; Chetverushkin, B. N.: DiMP-hydro solver for direct numerical simulation of fluid microflows within pore space of core samples (2019)
  4. Chassagne, Romain; Dörfler, Fabian; Guyenot, Michael; Harting, Jens: Modeling of capillary-driven flows in axisymmetric geometries (2019)
  5. Rao, Parthib; Schaefer, Laura: Lattice Boltzmann models for micro-tomographic pore-spaces (2019)
  6. Adrian R.G. Harwood, Joseph O’Connor, Jonathan Sanchez Muñoz, Marta Camps Santasmasas, Alistair J. Revell: LUMA: A many-core, Fluid–Structure Interaction solver based on the Lattice-Boltzmann Method (2018) not zbMATH
  7. Alpak, F. Omer; Gray, F.; Saxena, N.; Dietderich, J.; Hofmann, R.; Berg, S.: A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images (2018)
  8. Avramenko, Andriy A.; Shevchuk, Igor V.; Kravchuk, Alexander V.: Turbulent incompressible microflow between rotating parallel plates (2018)
  9. Morrison, Helen E.; Leder, Alfred: Sediment transport in turbulent flows with the lattice Boltzmann method (2018)
  10. Thorimbert, Yann; Marson, Francesco; Parmigiani, Andrea; Chopard, Bastien; Lätt, Jonas: Lattice Boltzmann simulation of dense rigid spherical particle suspensions using immersed boundary method (2018)
  11. Wittmann, M.; Haag, V.; Zeiser, T.; Köstler, H.; Wellein, G.: Lattice Boltzmann benchmark kernels as a testbed for performance analysis (2018)
  12. Woodgate, Mark A.; Barakos, George N.; Steijl, Rene; Pringle, Gavin J.: Parallel performance for a real time lattice Boltzmann code (2018)
  13. Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.: LB3D: a parallel implementation of the lattice-Boltzmann method for simulation of interacting amphiphilic fluids (2017)
  14. Seil, Philippe; Pirker, Stefan: LBDEMcoupling: open-source power for fluid-particle systems (2017)
  15. Wissocq, Gauthier; Gourdain, Nicolas; Malaspinas, Orestis; Eyssartier, Alexandre: Regularized characteristic boundary conditions for the lattice-Boltzmann methods at high Reynolds number flows (2017)
  16. Safi, Mohammad Amin; Turek, Stefan: GPGPU-based rising bubble simulations using a MRT lattice Boltzmann method coupled with level set interface capturing (2016)
  17. Schornbaum, Florian; Rüde, Ulrich: Massively parallel algorithms for the lattice Boltzmann method on nonuniform grids (2016)
  18. Zabelok, Sergey; Arslanbekov, Robert; Kolobov, Vladimir: Adaptive kinetic-fluid solvers for heterogeneous computing architectures (2015)
  19. Vergnault, E.; Sagaut, P.: An adjoint-based lattice Boltzmann method for noise control problems (2014)
  20. Matyka, Maciej; Koza, Zbigniew; Mirosław, Łukasz: Wall orientation and shear stress in the lattice Boltzmann model (2013)

1 2 next


Further publications can be found at: http://www.palabos.org/software/publications