Fluid flow at your fingertips A software tool for classical CFD, particle-based models and complex physical interaction, Palabos offers a powerful environment for your fluid flow simulations. Through the innovative matrix-based interface, setting up a massively parallel simulation or developing a new physical model has become simpler than ever.

References in zbMATH (referenced in 16 articles , 1 standard article )

Showing results 1 to 16 of 16.
Sorted by year (citations)

  1. Adrian R.G. Harwood, Joseph O’Connor, Jonathan Sanchez Muñoz, Marta Camps Santasmasas, Alistair J. Revell: LUMA: A many-core, Fluid–Structure Interaction solver based on the Lattice-Boltzmann Method (2018)
  2. Avramenko, Andriy A.; Shevchuk, Igor V.; Kravchuk, Alexander V.: Turbulent incompressible microflow between rotating parallel plates (2018)
  3. Morrison, Helen E.; Leder, Alfred: Sediment transport in turbulent flows with the lattice Boltzmann method (2018)
  4. Thorimbert, Yann; Marson, Francesco; Parmigiani, Andrea; Chopard, Bastien; Lätt, Jonas: Lattice Boltzmann simulation of dense rigid spherical particle suspensions using immersed boundary method (2018)
  5. Wittmann, M.; Haag, V.; Zeiser, T.; Köstler, H.; Wellein, G.: Lattice Boltzmann benchmark kernels as a testbed for performance analysis (2018)
  6. Woodgate, Mark A.; Barakos, George N.; Steijl, Rene; Pringle, Gavin J.: Parallel performance for a real time lattice Boltzmann code (2018)
  7. Seil, Philippe; Pirker, Stefan: LBDEMcoupling: open-source power for fluid-particle systems (2017)
  8. Wissocq, Gauthier; Gourdain, Nicolas; Malaspinas, Orestis; Eyssartier, Alexandre: Regularized characteristic boundary conditions for the lattice-Boltzmann methods at high Reynolds number flows (2017)
  9. Safi, Mohammad Amin; Turek, Stefan: GPGPU-based rising bubble simulations using a MRT lattice Boltzmann method coupled with level set interface capturing (2016)
  10. Schornbaum, Florian; Rüde, Ulrich: Massively parallel algorithms for the lattice Boltzmann method on nonuniform grids (2016)
  11. Zabelok, Sergey; Arslanbekov, Robert; Kolobov, Vladimir: Adaptive kinetic-fluid solvers for heterogeneous computing architectures (2015)
  12. Vergnault, E.; Sagaut, P.: An adjoint-based lattice Boltzmann method for noise control problems (2014)
  13. Matyka, Maciej; Koza, Zbigniew; Mirosław, Łukasz: Wall orientation and shear stress in the lattice Boltzmann model (2013)
  14. Xu, Hui; Sagaut, Pierre: Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods (2013)
  15. Lagrava, D.; Malaspinas, O.; Latt, J.; Chopard, B.: Advances in multi-domain lattice Boltzmann grid refinement (2012)
  16. Vergnault, E.; Sagaut, P.: Application of lattice Boltzmann method to sensitivity analysis via complex differentiation (2011)

Further publications can be found at: