matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell (ala MATLAB®* or Mathematica®†), web application servers, and six graphical user interface toolkits.

References in zbMATH (referenced in 150 articles )

Showing results 1 to 20 of 150.
Sorted by year (citations)

1 2 3 ... 6 7 8 next

  1. Andreas F. Haselsteiner; Jannik Lehmkuhl; Tobias Pape; Kai-Lukas Windmeier; Klaus-Dieter Thoben: ViroCon: A software to compute multivariate extremes using the environmental contour method (2019) not zbMATH
  2. Andrew Abi-Mansour: PyGran: An object-oriented library for DEM simulation and analysis (2019) not zbMATH
  3. Benjamin Bengfort; Rebecca Bilbro: Yellowbrick: Visualizing the Scikit-Learn Model Selection Process (2019) not zbMATH
  4. Blaise J. Thompson; Kyle F. Sunden; Darien J. Morrow; Daniel D. Kohler; John C. Wright: WrightTools: a Python package for multidimensional spectroscopy (2019) not zbMATH
  5. Carrillo, José Antonio; Craig, Katy; Patacchini, Francesco S.: A blob method for diffusion (2019)
  6. C. Bane Sullivan; Alexander A. Kaszynski: PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK) (2019) not zbMATH
  7. Christopher Hahne; Amar Aggoun: PlenoptiSign: An optical design tool for plenoptic imaging (2019) not zbMATH
  8. Cimrman, Robert; Lukeš, Vladimír; Rohan, Eduard: Multiscale finite element calculations in python using sfepy (2019)
  9. Clerx, M., Robinson, M., Lambert, B., Lei, C.L., Ghosh, S., Mirams, G.R. and Gavaghan, D.J.: Probabilistic Inference on Noisy Time Series (PINTS) (2019) not zbMATH
  10. Cox, Grace A.; Davies, Christopher J.; Livermore, Philip W.; Singleton, James: Penetration of boundary-driven flows into a rotating spherical thermally stratified fluid (2019)
  11. Danny C. Price, J. Emilio Enriquez, Yuhong Chen, Mark Siebert: Blimpy: Breakthrough Listen I/O Methods for Python (2019) not zbMATH
  12. D. Huppenkothen, M. Bachetti, A. L. Stevens, S. Migliari, P. Balm, O. Hammad, U. M. Khan, H. Mishra, H. Rashid, S. Sharma, R. V. Blanco, E. M. Ribeiro: Stingray: A Modern Python Library For Spectral Timing (2019) arXiv
  13. Dudziuk, Grzegorz; Lachowicz, Mirosław; Leszczyński, Henryk; Szymańska, Zuzanna: A simple model of collagen remodeling (2019)
  14. Eric W. Koch, Ryan D. Boyden, Blakesley Burkhart, Adam Ginsburg, Jason L. Loeppky, Stella S.R. Offner: TurbuStat: Turbulence Statistics in Python (2019) arXiv
  15. Gevorkyan, Migran N.; Korolkova, Anna V.; Kulyabov, Dmitry S.; Lovetskiy, Konstantin P.: Statistically significant comparative performance testing of Julia and Fortran languages in case of Runge-Kutta methods (2019)
  16. James F. Varner, Noor Eldabagh, Derek Volta, Reem Eldabagh, Jonathan J. Foley IV: WPTherml: A Python Package for the Design of Materials for Harnessing Heat (2019) not zbMATH
  17. Johansson, Robert: Numerical Python. Scientific computing and data science applications with Numpy, SciPy and Matplotlib (2019)
  18. Jonas Fassbender: libconform v0.1.0: a Python library for conformal prediction (2019) arXiv
  19. Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina: Cluster singularity: the unfolding of clustering behavior in globally coupled Stuart-Landau oscillators (2019)
  20. Krishna Naidoo: MiSTree: a Python package for constructing andanalysing Minimum Spanning Trees (2019) arXiv

1 2 3 ... 6 7 8 next