The libMesh library provides a framework for the numerical simulation of partial differential equations using arbitrary unstructured discretizations on serial and parallel platforms. A major goal of the library is to provide support for adaptive mesh refinement (AMR) computations in parallel while allowing a research scientist to focus on the physics they are modeling. libMesh currently supports 1D, 2D, and 3D steady and transient simulations on a variety of popular geometric and finite element types. The library makes use of high-quality, existing software whenever possible. PETSc is used for the solution of linear systems on both serial and parallel platforms, and LASPack is included with the library to provide linear solver support on serial machines. An optional interface to SLEPc is also provided for solving both standard and generalized eigenvalue problems.

References in zbMATH (referenced in 69 articles , 1 standard article )

Showing results 1 to 20 of 69.
Sorted by year (citations)

1 2 3 4 next

  1. Baiges, Joan; Bayona, Camilo: RefficientLib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes (2017)
  2. Luo, Li; Zhang, Qian; Wang, Xiao-Ping; Cai, Xiao-Chuan: A parallel two-phase flow solver on unstructured mesh in 3D (2017)
  3. Santiago Badia, Alberto F. Martin, Javier Principe: FEMPAR: An object-oriented parallel finite element framework (2017) arXiv
  4. Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl: Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier-Stokes equations (2016)
  5. Ballarin, Francesco; Faggiano, Elena; Ippolito, Sonia; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi; Scrofani, Roberto: Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization (2016)
  6. Bauman, Paul T.; Stogner, Roy H.: GRINS: a multiphysics framework based on the libMesh finite element library (2016) ioport
  7. De La Cruz, Luis M.; Ramos, Eduardo: General template units for the finite volume method in box-shaped domains (2016)
  8. Einkemmer, Lukas; Ostermann, Alexander: Overcoming order reduction in diffusion-reaction splitting. II: Oblique boundary conditions (2016)
  9. Guillén-González, F.; Rodríguez Galván, J.R.: On the stability of approximations for the Stokes problem using different finite element spaces for each component of the velocity (2016)
  10. Homolya, M.; Ham, D.A.: A parallel edge orientation algorithm for quadrilateral meshes (2016)
  11. Laboure, Vincent M.; McClarren, Ryan G.; Hauck, Cory D.: Implicit filtered $P_N$ for high-energy density thermal radiation transport using discontinuous Galerkin finite elements (2016)
  12. Lima, E.A.B.F.; Oden, J.T.; Hormuth, D.A.II; Yankeelov, T.E.; Almeida, R.C.: Selection, calibration, and validation of models of tumor growth (2016)
  13. Nicholas A. Battista, W. Christopher Strickland, Laura A. Miller: IB2d: a Python and MATLAB implementation of the immersed boundary method (2016) arXiv
  14. Oden, J.Tinsley; Lima, Ernesto A.B.F.; Almeida, Regina C.; Feng, Yusheng; Rylander, Marissa Nichole; Fuentes, David; Faghihi, Danial; Rahman, Mohammad M.; DeWitt, Matthew; Gadde, Manasa; Zhou, J.Cliff: Toward predictive multiscale modeling of vascular tumor growth, computational and experimental oncology for tumor prediction (2016)
  15. Quarteroni, Alfio; Manzoni, Andrea; Negri, Federico: Reduced basis methods for partial differential equations. An introduction (2016)
  16. Smetana, Kathrin; Patera, Anthony T.: Optimal local approximation spaces for component-based static condensation procedures (2016)
  17. Tobias Leibner, Rene Milk, Felix Schindler: Extending DUNE: The dune-xt modules (2016) arXiv
  18. Beskos, Alexandros; Jasra, Ajay; Muzaffer, Ege A.; Stuart, Andrew M.: Sequential Monte Carlo methods for Bayesian elliptic inverse problems (2015)
  19. Dobbelaere, D.; De Zutter, D.; Van Hese, J.; Sercu, J.; Boonen, T.; Rogier, H.: A Calderón multiplicative preconditioner for the electromagnetic Poincaré-Steklov operator of a heterogeneous domain with scattering applications (2015)
  20. Paul T. Bauman, Roy H. Stogner: GRINS: A Multiphysics Framework Based on the libMesh Finite Element Library (2015) arXiv

1 2 3 4 next

Further publications can be found at: