The libMesh library provides a framework for the numerical simulation of partial differential equations using arbitrary unstructured discretizations on serial and parallel platforms. A major goal of the library is to provide support for adaptive mesh refinement (AMR) computations in parallel while allowing a research scientist to focus on the physics they are modeling. libMesh currently supports 1D, 2D, and 3D steady and transient simulations on a variety of popular geometric and finite element types. The library makes use of high-quality, existing software whenever possible. PETSc is used for the solution of linear systems on both serial and parallel platforms, and LASPack is included with the library to provide linear solver support on serial machines. An optional interface to SLEPc is also provided for solving both standard and generalized eigenvalue problems.

References in zbMATH (referenced in 54 articles , 1 standard article )

Showing results 1 to 20 of 54.
Sorted by year (citations)

1 2 3 next

  1. Bauman, Paul T.; Stogner, Roy H.: GRINS: a multiphysics framework based on the libMesh finite element library (2016)
  2. Einkemmer, Lukas; Ostermann, Alexander: Overcoming order reduction in diffusion-reaction splitting. II: Oblique boundary conditions (2016)
  3. Guillén-González, F.; Rodríguez Galván, J.R.: On the stability of approximations for the Stokes problem using different finite element spaces for each component of the velocity (2016)
  4. Homolya, M.; Ham, D.A.: A parallel edge orientation algorithm for quadrilateral meshes (2016)
  5. Lima, E.A.B.F.; Oden, J.T.; Hormuth, D.A.II; Yankeelov, T.E.; Almeida, R.C.: Selection, calibration, and validation of models of tumor growth (2016)
  6. Quarteroni, Alfio; Manzoni, Andrea; Negri, Federico: Reduced basis methods for partial differential equations. An introduction (2016)
  7. Smetana, Kathrin; Patera, Anthony T.: Optimal local approximation spaces for component-based static condensation procedures (2016)
  8. Tobias Leibner, Rene Milk, Felix Schindler: Extending DUNE: The dune-xt modules (2016) arXiv
  9. Beskos, Alexandros; Jasra, Ajay; Muzaffer, Ege A.; Stuart, Andrew M.: Sequential Monte Carlo methods for Bayesian elliptic inverse problems (2015)
  10. Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.: A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins (2015)
  11. Prudencio, E.E.; Bauman, P.T.; Faghihi, D.; Ravi-Chandar, K.; Oden, J.T.: A computational framework for dynamic data-driven material damage control, based on Bayesian inference and model selection (2015)
  12. Witkowski, T.; Ling, S.; Praetorius, S.; Voigt, A.: Software concepts and numerical algorithms for a scalable adaptive parallel finite element method (2015)
  13. Corsini, A.; Rispoli, F.; Sheard, A.G.; Takizawa, K.; Tezduyar, T.E.; Venturini, P.: A variational multiscale method for particle-cloud tracking in turbomachinery flows (2014)
  14. Kalashnikova, Irina; Barone, Matthew F.; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart G.: Construction of energy-stable projection-based reduced order models (2014)
  15. Matveenko, V.P.; Shardakov, I.N.; Shestakov, A.P.; Wasserman, I.N.: Development of finite element models for studying the electrical excitation of myocardium (2014)
  16. Nagler, Loris; Rong, Ping; Schanz, Martin; von Estorff, Otto: Sound transmission through a poroelastic layered panel (2014)
  17. Shi, Yi; Wang, Xiao-Ping: Modeling and simulation of dynamics of three-component flows on solid surface (2014)
  18. Soghrati, Soheil: Hierarchical interface-enriched finite element method: an automated technique for mesh-independent simulations (2014)
  19. Weinbub, Josef; Rupp, Karl; Selberherr, Siegfried: Highly flexible and reusable finite element simulations with ViennaX (2014)
  20. Zhu, Y.; Luo, X.Y.; Gao, H.; Mccomb, C.; Berry, C.: A numerical study of a heart phantom model (2014)

1 2 3 next

Further publications can be found at: