Code_Aster is mainly a solver for mechanics, based on the theory of Finite elements. This tool covers a large range of applications : 3D thermal analyses and mechanical analyses in linear and non-linear statics and dynamics, for machines, pressure vessels and civil engineering structures. Beyond the standard functionalities of a FEM software for solid mechanics, Code_Aster compiles specific research in various fields : fatigue, damage, fracture, contact, geomaterials, porous media, multi-physics coupling. It is widely used at EDF for the expertise and the maintenance of power plants and electrical networks.

References in zbMATH (referenced in 36 articles )

Showing results 1 to 20 of 36.
Sorted by year (citations)

1 2 next

  1. Jansen van Rensburg, Gerhardus J.; Kok, Schalk; Wilke, Daniel N.: Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density (2018)
  2. P. Cardiff, A. Karač, P. De Jaeger, H. Jasak, J. Nagy, A. Ivanković, Ž. Tuković: An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations (2018) arXiv
  3. Drouet, Guillaume; Hild, Patrick: An accurate local average contact method for nonmatching meshes (2017)
  4. Oumaziz, Paul; Gosselet, Pierre; Boucard, Pierre-Alain; Guinard, Stéphane: A non-invasive implementation of a mixed domain decomposition method for frictional contact problems (2017)
  5. Duval, Mickaël; Passieux, Jean-Charles; Salaün, Michel; Guinard, Stéphane: Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition (2016)
  6. Schmitt, Pál; Windt, Christian; Nicholson, Jonathan; Elsässer, Björn: Development and validation of a procedure for numerical vibration analysis of an oscillating wave surge converter (2016)
  7. Casoni, E.; Jérusalem, A.; Samaniego, C.; Eguzkitza, B.; Lafortune, P.; Tjahjanto, D. D.; Sáez, X.; Houzeaux, G.; Vázquez, M.: Alya: computational solid mechanics for supercomputers (2015)
  8. Martin, A.; Esnault, J.-B.; Massin, P.: About the use of standard integration schemes for X-FEM in solid mechanics plasticity (2015)
  9. Matveenko, V. P.; Shardakov, I. N.; Shestakov, A. P.; Wasserman, I. N.: Development of finite element models for studying the electrical excitation of myocardium (2014)
  10. Nguyen, Xuan Huy: Performance of multifiber beam element for seismic analysis of reinforced concrete structures (2014)
  11. Maheo, L.; Grolleau, V.; Rio, G.: Numerical damping of spurious oscillations: a comparison between the bulk viscosity method and the explicit dissipative Tchamwa-Wielgosz scheme (2013)
  12. Colombo, Daniele: An implicit geometrical approach to level sets update for 3D non planar X-FEM crack propagation (2012)
  13. Cuvilliez, Sam; Feyel, Frédéric; Lorentz, Eric; Michel-Ponnelle, Sylvie: A finite element approach coupling a continuous gradient damage model and a cohesive zone model within the framework of quasi-brittle failure (2012)
  14. Guy, Nicolas; Seyedi, Darius M.; Hild, François: A probabilistic nonlocal model for crack initiation and propagation in heterogeneous brittle materials (2012)
  15. Angelini, O.; Chavant, C.; Chénier, E.; Eymard, R.; Granet, S.: Finite volume approximation of a diffusion-dissolution model and application to nuclear waste storage (2011)
  16. Colombo, Daniele; Massin, Patrick: Fast and robust level set update for 3D non-planar X-FEM crack propagation modelling (2011)
  17. Giot, Richard; Giraud, Albert; Auvray, Christophe; Homand, Françoise; Guillon, Théophile: Fully coupled poromechanical back analysis of the pulse test by inverse method (2011)
  18. Lorentz, E.; Godard, V.: Gradient damage models: toward full-scale computations (2011)
  19. Lorentz, Eric; Cuvilliez, S.; Kazymyrenko, K.: Convergence of a gradient damage model toward a cohesive zone model (2011)
  20. Mahjoubi, N.; Gravouil, A.; Combescure, A.; Greffet, N.: A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics (2011)

1 2 next