House of Graphs

House of graphs: A database of interesting graphs In this note we present House of Graphs ( which is a new database of graphs. The key principle is to have a searchable database and offer -- next to complete lists of some graph classes-also a list of special graphs that have already turned out to be interesting and relevant in the study of graph theoretic problems or as counterexamples to conjectures. This list can be extended by users of the database.

References in zbMATH (referenced in 13 articles , 1 standard article )

Showing results 1 to 13 of 13.
Sorted by year (citations)

  1. Hoppe, Travis; Petrone, Anna: Integer sequence discovery from small graphs (2016)
  2. Brinkmann, Gunnar; Preissmann, Myriam; Sasaki, Diana: Snarks with total chromatic number 5 (2015)
  3. Carneiro, André Breda; da Silva, C^andida Nunes; McKay, Brendan: A faster test for 4-flow-criticality in snarks (2015)
  4. Goedgebeur, Jan: A counterexample to the pseudo 2-factor isomorphic graph conjecture (2015)
  5. Goedgebeur, Jan; McKay, Brendan D.: Recursive generation of IPR fullerenes (2015)
  6. Heinig, Peter: On prisms, Möbius ladders and the cycle space of dense graphs (2014)
  7. Smith-Miles, Kate; Baatar, Davaatseren: Exploring the role of graph spectra in graph coloring algorithm performance (2014)
  8. Smith-Miles, Kate; Baatar, Davaatseren; Wreford, Brendan; Lewis, Rhyd: Towards objective measures of algorithm performance across instance space (2014)
  9. Brinkmann, Gunnar; Coolsaet, Kris; Goedgebeur, Jan; Mélot, Hadrien: House of Graphs: a database of interesting graphs (2013)
  10. Brinkmann, Gunnar; Goedgebeur, Jan; Hägglund, Jonas; Markström, Klas: Generation and properties of snarks (2013)
  11. Goedgebeur, Jan; Radziszowski, Stanisław P.: The Ramsey number $R(3,K_10-e)$ and computational bounds for $R(3,G)$ (2013)
  12. Goedgebeur, Jan; Radziszowski, Stanisław P.: New computational upper bounds for Ramsey numbers $R(3,k)$ (2013)
  13. Brinkmann, Gunnar; Goedgebeur, Jan; Schlage-Puchta, Jan-Christoph: Ramsey numbers $R(K_3, G)$ for graphs of order 10 (2012)