DsTool is a program for interactively exporing the dynamics of dynamical systems. It allows you to draw trajectories, to find fixed points or bifurcation points. Dynamical systems arise in many disciplins of physics, biology and chemistry - basically always whenever something can be described by a set ordinary differential equations. The methods employed by the theory of dynamical systems allow to compute important properties directly without the need for long brute-force simulations.

References in zbMATH (referenced in 94 articles )

Showing results 1 to 20 of 94.
Sorted by year (citations)

1 2 3 4 5 next

  1. Linaro, Daniele; Storace, Marco: BAL: a library for the \itbrute-force analysis of dynamical systems (2016)
  2. Smaoui, Nejib; Zribi, Mohamed: Dynamics and control of the 2-d Navier-Stokes equations (2014)
  3. Aguirre, Pablo; Doedel, Eusebius J.; Krauskopf, Bernd; Osinga, Hinke M.: Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields (2011)
  4. Sánchez, Juan; Net, Marta: On the multiple shooting continuation of periodic orbits by Newton-Krylov methods (2010)
  5. Zhusubaliyev, Zhanybai T.; Mosekilde, Erik: Novel routes to chaos through torus breakdown in non-invertible maps (2009)
  6. Zhusubaliyev, Zhanybai T.; Mosekilde, Erik: Multilayered tori in a system of two coupled logistic maps (2009)
  7. Derks, Gianne; Ebert, Ute; Meulenbroek, Bernard: Laplacian instability of planar streamer ionization fronts---An example of pulled front analysis (2008)
  8. Algaba, Antonio; Freire, Emilio; Gamero, Estanislao; Rodríguez-Luis, Alejandro J.: Resonances of periodic orbits in Rössler system in presence of a triple-zero bifurcation (2007)
  9. Freire, Emilio; Rodríguez-Luis, Alejandro J.: Numerical bifurcation analysis of electronic circuits (2007)
  10. Govaerts, W.; Ghaziani, R.Khoshsiar; Kuznetsov, Yu.A.; Meijer, H.G.E.: Numerical methods for two-parameter local bifurcation analysis of maps (2007)
  11. van Voorn, George A.K.; Hemerik, Lia; Boer, Martin P.; Kooi, Bob W.: Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect (2007)
  12. Doedel, Eusebius; Krauskopf, Bernd; Osinga, Hinke M.: Global bifurcations of the Lorenz manifold (2006)
  13. England, J.P.; Krauskopf, B.; Osinga, H.M.: Bifurcations of stable sets in noninvertible planar maps (2005)
  14. Freire, E.; Pizarro, L.; Rodríguez-Luis, A.J.; Fernández-Sánchez, F.: Multiparametric bifurcations in an enzyme-catalyzed reaction model (2005)
  15. Gonchenko, V.S.; Kuznetsov, Yu.A.; Meijer, H.G.E.: Generalized Hénon map and bifurcations of homoclinic tangencies (2005)
  16. Krauskopf, B.; Osinga, H.M.; Doedel, E.J.; Henderson, M.E.; Guckenheimer, J.; Vladimirsky, A.; Dellnitz, M.; Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields (2005)
  17. Rademacher, Jens D.M.: Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit (2005)
  18. Rokni Lamooki, G.R.; Townley, S.; Osinga, H.M.: Bifurcations and limit dynamics in adaptive control systems. (2005)
  19. Algaba, Antonio; Freire, Emilio; Gamero, Estanislao; García, Cristóbal: An algorithm for computing quasi-homogeneous formal normal forms under equivalence (2004)
  20. England, J.P.; Krauskopf, B.; Osinga, H.M.: Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse (2004)

1 2 3 4 5 next