References in zbMATH (referenced in 59 articles )

Showing results 1 to 20 of 59.
Sorted by year (citations)

1 2 3 next

  1. Zhang, G.; Martelli, F.; Torquato, S.: The structure factor of primes (2018)
  2. Zhang, Meng; Hu, Zhi; Xu, Maozhi: On constructing parameterized families of pairing-friendly elliptic curves with $\rho =1$ (2017)
  3. Abatzoglou, Alexander; Silverberg, Alice; Sutherland, Andrew V.; Wong, Angela: A framework for deterministic primality proving using elliptic curves with complex multiplication (2016)
  4. Barbulescu, Razvan: A brief history of pairings (2016)
  5. Martins, Rodrigo S.V.; Panario, Daniel: On the heuristic of approximating polynomials over finite fields by random mappings (2016)
  6. Diao, Oumar; Fouotsa, Emmanuel: Arithmetic of the level four theta model of elliptic curves (2015)
  7. Kiss, Gyöngyvér: A strategy for elliptic curve primality proving (2015)
  8. Enge, Andreas; Morain, François: Generalised Weber functions (2014)
  9. Kuperberg, Greg: Knottedness is in NP, modulo GRH (2014)
  10. Lee, Eunjeong; Lee, Hyang-Sook; Park, Cheol-Min: Polynomial generating pairing and its criterion for optimal pairing (2014)
  11. Gómez Pardo, José Luis: Introduction to cryptography with Maple (2013)
  12. Granger, Robert; Moss, Andrew: Generalised Mersenne numbers revisited (2013)
  13. Hong, Hoon; Lee, Eunjeong; Lee, Hyang-Sook; Park, Cheol-Min: Simple and exact formula for minimum loop length in $\mathrmAte_i $ pairing based on Brezing-Weng curves (2013)
  14. Lygeros, Nik; Rozier, Olivier: Odd prime values of the Ramanujan tau function (2013)
  15. Jeon, Daeyeol; Kang, Soon-Yi; Kim, Chang Heon: Modularity of Galois traces of class invariants (2012)
  16. Amounas, F.; El Kinani, E.H.; Chillali, A.: An application of discrete algorithms in asymmetric cryptography (2011)
  17. Bisson, Gaetan; Sutherland, Andrew V.: Computing the endomorphism ring of an ordinary elliptic curve over a finite field (2011)
  18. Boneh, D.; Rubin, K.; Silverberg, A.: Finding composite order ordinary elliptic curves using the Cocks-Pinch method (2011)
  19. Freeman, David Mandell; Satoh, Takakazu: Constructing pairing-friendly hyperelliptic curves using Weil restriction (2011)
  20. O’Connor, Laura Hitt; McGuire, Gary; Naehrig, Michael; Streng, Marco: A CM construction for curves of genus 2 with $p$-rank 1 (2011)

1 2 3 next