CHEBINT: a MATLAB/Octave toolbox for fast multivariate Chebyshev approximation CHEBINT is a MATLAB/Octave toolbox that provides a user-friendly interface to multivariate Chebyshev approximations. It features highly efficient, fast FFT-based, algorithms to determine the approximation (see [2]) that are based on the theory of Chebyshev lattices as introduced in [1]. The approximations itself can then be manipulated, somehow similarly to symbolic equations: the toolbox provides definite/indefinite integration and differentiation, and basic operators like addition, subtraction, multiplication and division (as described in [3]).

References in zbMATH (referenced in 11 articles )

Showing results 1 to 11 of 11.
Sorted by year (citations)

  1. Ganesh, Mahadevan; Hawkins, Stuart C.: Hyperinterpolation for spectral wave propagation models in three dimensions (2018)
  2. Johnson, Robert W.: Algorithm 988. AMGKQ: an efficient implementation of adaptive multivariate Gauss-Kronrod quadrature for simultaneous integrands in Octave/MATLAB (2018)
  3. Aurentz, Jared L.; Trefethen, Lloyd N.: Chopping a Chebyshev series (2017)
  4. Dencker, Peter; Erb, Wolfgang: Multivariate polynomial interpolation on Lissajous-Chebyshev nodes (2017)
  5. Ghili, Saman; Iaccarino, Gianluca: Least squares approximation of polynomial chaos expansions with optimized grid points (2017)
  6. Trefethen, Lloyd N.: Cubature, approximation, and isotropy in the hypercube (2017)
  7. Erb, Wolfgang: Bivariate Lagrange interpolation at the node points of Lissajous curves -- the degenerate case (2016)
  8. Erb, Wolfgang; Kaethner, Christian; Ahlborg, Mandy; Buzug, Thorsten M.: Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves (2016)
  9. Poppe, Koen; Cools, Ronald: CHEBINT, a MATLAB/Octave toolbox for fast multivariate integration and interpolation based on Chebyshev approximations over hypercubes (2013)
  10. Poppe, Koen; Cools, Ronald: In search for good Chebyshev lattices (2012)
  11. Cools, Ronald; Poppe, Koen: Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function (2011)

Further publications can be found at: