References in zbMATH (referenced in 59 articles )

Showing results 1 to 20 of 59.
Sorted by year (citations)

1 2 3 next

  1. Hart, William E.; Laird, Carl D.; Watson, Jean-Paul; Woodruff, David L.; Hackebeil, Gabriel A.; Nicholson, Bethany L.; Siirola, John D.: Pyomo -- optimization modeling in Python (2017)
  2. Andreani, R.; Júdice, J.J.; Martínez, J.M.; Martini, T.: Feasibility problems with complementarity constraints (2016)
  3. Benko, Matus; Gfrerer, Helmut: An SQP method for mathematical programs with complementarity constraints with strong convergence properties. (2016)
  4. Melo, Teófilo M.M.; Matias, João L.H.; Monteiro, M.Teresa T.: A penalty method for solving the MPCC problem (2016)
  5. Kadrani, Abdeslam; Dussault, Jean Pierre; Benchakroun, Abdelhamid: A globally convergent algorithm for MPCC (2015)
  6. Lee, Yu-Ching; Pang, Jong-Shi; Mitchell, John E.: An algorithm for global solution to bi-parametric linear complementarity constrained linear programs (2015)
  7. Mynttinen, I.; Hoffmann, A.; Runge, E.; Li, P.: Smoothing and regularization strategies for optimization of hybrid dynamic systems (2015)
  8. Wu, Jia; Zhang, Liwei; Zhang, Yi: An inexact Newton method for stationary points of mathematical programs constrained by parameterized quasi-variational inequalities (2015)
  9. Červinka, Michal; Outrata, Jiří V.; Pištěk, Miroslav: On stability of M-stationary points in mpccs (2014)
  10. Chieu, Nguyen Huy; Lee, Gue Myung: Constraint qualifications for mathematical programs with equilibrium constraints and their local preservation property (2014)
  11. Kanzow, Christian; Schwartz, Alexandra: Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints (2014)
  12. Pang, Li-Ping; Meng, Fan-Yun; Chen, Shuang; Li, Dan: Optimality conditions for multiobjective optimization problem constrained by parameterized variational inequalities (2014)
  13. Herskovits, José; Filho, Mario Tanaka; Leontiev, Anatoli: An interior point technique for solving bilevel programming problems (2013)
  14. Hoheisel, Tim; Kanzow, Christian; Schwartz, Alexandra: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints (2013)
  15. Kanzow, Christian; Schwartz, Alexandra: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties (2013)
  16. Wu, Jia; Zhang, Liwei; Zhang, Yi: A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations (2013)
  17. Coulibaly, Z.; Orban, D.: An $\ell_1$ elastic interior-point method for mathematical programs with complementarity constraints (2012)
  18. Fang, Haw-Ren; Leyffer, Sven; Munson, Todd: A pivoting algorithm for linear programming with linear complementarity constraints (2012)
  19. Hoheisel, Tim; Kanzow, Christian; Schwartz, Alexandra: Convergence of a local regularization approach for mathematical programmes with complementarity or vanishing constraints (2012)
  20. Izmailov, A.F.; Pogosyan, A.L.; Solodov, M.V.: Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints (2012)

1 2 3 next


Further publications can be found at: http://wiki.mcs.anl.gov/leyffer/index.php/Sven_Leyffer%27s_Publications