Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

StochKit

StochKit is an extensible stochastic simulation framework developed in C++ that aims to make stochastic simulation accessible to practicing biologists and chemists, while remaining open to extension via new stochastic and multiscale algorithms.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • chemical master equation
  • systems biology
  • chemical reaction networks
  • Markov process
  • Gillespie exact method
  • differential equations
  • Rosenzweig-MacArthur predator-prey model
  • R package
  • ergodicity
  • cell dynamics
  • spectral analysis
  • biological dynamics
  • Bayesian inference stochastic chemical kinetics
  • hybrid discrete-continuum models
  • asymptotic expansions
  • stochastic simulations
  • flux splitting
  • meta-population model
  • approximation methods
  • multiscale modelling
  • particle-based models
  • finite volume
  • cancer dynamics
  • gene regulation
  • bone remodelling
  • Kronecker product
  • simulation of biological systems
  • steady state distribution
  • Lyapunov function
  • network inference

  • URL: engineering.ucsb.edu/~...
  • InternetArchive
  • Authors: Kevin R. Sanft, Sheng Wu, Min Roh, Jin Fu, Rone Kwei Lim, Linda R. Petzold
  • Language: C++

  • Add information on this software.


  • Related software:
  • StochKit2
  • R
  • HOM4PS
  • Bio-PEPA
  • Python
  • LDQBD
  • COLAMD
  • simecol
  • GillespieSSA
  • Gromacs
  • Show more...
  • ABC-SysBio
  • CERENA
  • Matlab
  • iNA
  • APNN-Toolbox
  • CHARMM
  • PEPA
  • PEPS
  • BioShape
  • TALx86
  • Show less...

References in zbMATH (referenced in 10 articles )

Showing results 1 to 10 of 10.
y Sorted by year (citations)

  1. Cinquemani, Eugenio: Stochastic reaction networks with input processes: analysis and application to gene expression inference (2019)
  2. Munsky, Brian (ed.); Hlavacek, William S. (ed.); Tsimring, Lev S. (ed.): Quantitative biology. Theory, computational methods, and models (2018)
  3. Schnoerr, David; Sanguinetti, Guido; Grima, Ramon: Approximation and inference methods for stochastic biochemical kinetics -- a tutorial review (2017)
  4. Popović, Nikola; Marr, Carsten; Swain, Peter S.: A geometric analysis of fast-slow models for stochastic gene expression (2016)
  5. Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.: Hybrid discrete/continuum algorithms for stochastic reaction networks (2015)
  6. Zunino, Roberto; Nikolić, Đurica; Priami, Corrado; Kahramanoğulları, Ozan; Schiavinotto, Tommaso: (\ell): an imperative DSL to stochastically simulate biological systems (2015) ioport
  7. Dayar, Tuǧrul: Analyzing Markov chains using Kronecker products. Theory and applications (2012)
  8. Dayar, Tuğrul; Orhan, M. Can: Kronecker-based infinite level-dependent QBD processes (2012)
  9. Buti, F.; Cacciagrano, D.; Corradini, F.; Merelli, E.; Tesei, L.; Pani, M.: Bone remodelling in \textscBioShape (2010)
  10. Mario Pineda-Krch: GillespieSSA: Implementing the Gillespie Stochastic Simulation Algorithm in R (2008) not zbMATH

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 34 Ordinary differential...
      • 60 Probability theory and...
      • 62 Statistics
      • 65 Numerical analysis
      • 92 Applications of...
    • Other MSC classes
      • 37 Dynamical systems and...
      • 68 Computer science
      • 80 Classical...

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000

  • Chart: cumulative / absolute
  • Terms & Conditions
  • Imprint
  • Privacy Policy