Vlasov Approximation by a Direct and Object-oriented Resolution. The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent electro magnetic fields. The unknown f(t,x,v), depending on the time t, the position x, and the velocity v, represents the distribution function of particles (electrons, ions,...) in phase space. This model can be used for the study of beam propagation or of a collisionless plasma.

References in zbMATH (referenced in 79 articles )

Showing results 1 to 20 of 79.
Sorted by year (citations)

1 2 3 4 next

  1. Filbet, Francis; Prouveur, Charles: High order time discretization for backward semi-Lagrangian methods (2016)
  2. Filbet, Francis; Rodrigues, Luis Miguel: Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field (2016)
  3. Hamiaz, Adnane; Mehrenberger, Michel; Sellama, Hocine; Sonnendrücker, Eric: The semi-Lagrangian method on curvilinear grids (2016)
  4. Kates-Harbeck, Julian; Totorica, Samuel; Zrake, Jonathan; Abel, Tom: Simplex-in-cell technique for collisionless plasma simulations (2016)
  5. Mouton, Alexandre: Expansion of a singularly perturbed equation with a two-scale converging convection term (2016)
  6. Sousbie, Thierry; Colombi, Stéphane: ColDICE: A parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation (2016)
  7. Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui: Numerical study of the two-species Vlasov-Ampère system: energy-conserving schemes and the current-driven ion-acoustic instability (2015)
  8. Einkemmer, Lukas; Ostermann, Alexander: A splitting approach for the Kadomtsev-Petviashvili equation (2015)
  9. Kormann, Katharina: A semi-Lagrangian Vlasov solver in tensor train format (2015)
  10. Taitano, William T.; Chacón, Luis: Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampère system, part I: Collisionless aspects (2015)
  11. Back, Aurore; Sonnendrücker, Eric: Finite element Hodge for spline discrete differential forms. Application to the Vlasov-Poisson system (2014)
  12. Campos Pinto, Martin; Sonnendrücker, Eric; Friedman, Alex; Grote, David P.; Lund, Steve M.: Noiseless Vlasov-Poisson simulations with linearly transformed particles (2014)
  13. Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui: Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampère system (2014)
  14. Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui: Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system (2014)
  15. Christlieb, Andrew; Guo, Wei; Morton, Maureen; Qiu, Jing-Mei: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations (2014)
  16. Güçlü, Yaman; Christlieb, Andrew J.; Hitchon, William N.G.: Arbitrarily high order convected scheme solution of the Vlasov-Poisson system (2014)
  17. Vogman, G.V.; Colella, P.; Shumlak, U.: Dory-Guest-Harris instability as a benchmark for continuum kinetic Vlasov-Poisson simulations of magnetized plasmas (2014)
  18. Xiong, Tao; Qiu, Jing-Mei; Xu, Zhengfu; Christlieb, Andrew: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation (2014)
  19. Yang, Chang; Filbet, Francis: Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations (2014)
  20. Acebrón, Juan A.; Rodríguez-Rozas, Ángel: Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov-Poisson simulations (2013)

1 2 3 4 next

Further publications can be found at: