Vlasov Approximation by a Direct and Object-oriented Resolution. The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent electro magnetic fields. The unknown f(t,x,v), depending on the time t, the position x, and the velocity v, represents the distribution function of particles (electrons, ions,...) in phase space. This model can be used for the study of beam propagation or of a collisionless plasma.

References in zbMATH (referenced in 60 articles )

Showing results 1 to 20 of 60.
Sorted by year (citations)

1 2 3 next

  1. Filbet, Francis; Prouveur, Charles: High order time discretization for backward semi-Lagrangian methods (2016)
  2. Filbet, Francis; Rodrigues, Luis Miguel: Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field (2016)
  3. Hamiaz, Adnane; Mehrenberger, Michel; Sellama, Hocine; Sonnendrücker, Eric: The semi-Lagrangian method on curvilinear grids (2016)
  4. Kormann, Katharina: A semi-Lagrangian Vlasov solver in tensor train format (2015)
  5. Back, Aurore; Sonnendrücker, Eric: Finite element Hodge for spline discrete differential forms. Application to the Vlasov-Poisson system (2014)
  6. Acebrón, Juan A.; Rodríguez-Rozas, Ángel: Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov-Poisson simulations (2013)
  7. Guo, Wei; Qiu, Jing-Mei: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation (2013)
  8. Mehrenberger, M.; Steiner, C.; Marradi, L.; Crouseilles, N.; Sonnendrücker, E.; Afeyan, B.: Vlasov on GPU (VOG project) (2013)
  9. Pham, N.; Helluy, P.; Crestetto, A.: Space-only hyperbolic approximation of the Vlasov equation (2013)
  10. Cheng, Yingda; Gamba, Irene M.: Numerical study of one-dimensional Vlasov-Poisson equations for infinite homogeneous stellar systems (2012)
  11. Crouseilles, Nicolas; Glanc, Pierre; Mehrenberger, Michel; Steiner, Christophe: Finite volume schemes for Vlasov (2012)
  12. De Dios, Blanca Ayuso; Carrillo, José A.; Shu, Chi-Wang: Discontinuous Galerkin methods for the multi-dimensional Vlasov-Poisson problem (2012)
  13. Lipatov, Alexander S.: Merging for particle-mesh complex particle kinetic modeling of the multiple plasma beams (2012)
  14. Umeda, Takayuki; Nariyuki, Yasuhiro; Kariya, Daichi: A non-oscillatory and conservative semi-Lagrangian scheme with fourth-degree polynomial interpolation for solving the Vlasov equation (2012)
  15. Abiteboul, J.; Latu, G.; Grandgirard, V.; Ratnani, A.; Sonnendrücker, E.; Strugarek, A.: Solving the Vlasov equation in complex geometries (2011)
  16. Ayuso, Blanca; Carrillo, José A.; Shu, Chi-Wang: Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system (2011)
  17. Crouseilles, N.; Mehrenberger, M.; Vecil, F.: Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson (2011)
  18. Minoshima, Takashi; Matsumoto, Yosuke; Amano, Takanobu: Multi-moment advection scheme for Vlasov simulations (2011)
  19. Qiu, Jing-Mei; Shu, Chi-Wang: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov-Poisson system (2011)
  20. Qiu, Jing-Mei; Shu, Chi-Wang: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow (2011)

1 2 3 next

Further publications can be found at: