References in zbMATH (referenced in 129 articles , 1 standard article )

Showing results 1 to 20 of 129.
Sorted by year (citations)

1 2 3 ... 5 6 7 next

  1. Chen, Chiun-Chuan; Ha, Seung-Yeal; Zhang, Xiongtao: The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements (2018)
  2. Chertock, Alina; Epshteyn, Yekaterina; Hu, Hengrui; Kurganov, Alexander: High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems (2018)
  3. Liu, Jian-Guo; Wang, Li; Zhou, Zhennan: Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations (2018)
  4. Akhmouch, M.; Benzakour Amine, M.: A corrected decoupled scheme for chemotaxis models (2017)
  5. Akhmouch, M.; Benzakour Amine, M.: A time semi-exponentially fitted scheme for chemotaxis-growth models (2017)
  6. Borsche, Raul; Klar, Axel; Pham, T.N.Ha: Nonlinear flux-limited models for chemotaxis on networks (2017)
  7. Burini, D.; Chouhad, N.: Hilbert method toward a multiscale analysis from kinetic to macroscopic models for active particles (2017)
  8. Cho, C.-H.: A numerical algorithm for blow-up problems revisited (2017)
  9. Lagoutière, Frédéric; Vauchelet, Nicolas: Analysis and simulation of nonlinear and nonlocal transport equations (2017)
  10. Li, Xingjie Helen; Shu, Chi-Wang; Yang, Yang: Local discontinuous Galerkin method for the Keller-Segel chemotaxis model (2017)
  11. Zhou, Guanyu; Saito, Norikazu: Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis (2017)
  12. Akhmouch, M.; Benzakour Amine, M.: Semi-implicit finite volume schemes for a chemotaxis-growth model (2016)
  13. Bellouquid, Abdelghani; Chouhad, Nadia: Kinetic models of chemotaxis towards the diffusive limit: asymptotic analysis (2016)
  14. Borsche, R.; Kall, J.; Klar, A.; Pham, T.N.H.: Kinetic and related macroscopic models for chemotaxis on networks (2016)
  15. Buono, Pietro-Luciano; Eftimie, R.: Lyapunov-Schmidt and centre manifold reduction methods for nonlocal PDEs modelling animal aggregations (2016)
  16. Calvez, Vincent; Gallouët, Thomas O.: Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up (2016)
  17. Carrillo, J.A.; James, F.; Lagoutière, F.; Vauchelet, N.: The Filippov characteristic flow for the aggregation equation with mildly singular potentials (2016)
  18. Dimarco, Giacomo; Motsch, Sebastien: Self-alignment driven by jump processes: macroscopic limit and numerical investigation (2016)
  19. Gosse, Laurent; Vauchelet, Nicolas: Numerical high-field limits in two-stream kinetic models and 1D aggregation equations (2016)
  20. James, François; Vauchelet, Nicolas: One-dimensional aggregation equation after blow up: existence, uniqueness and numerical simulation (2016)

1 2 3 ... 5 6 7 next