References in zbMATH (referenced in 156 articles , 1 standard article )

Showing results 1 to 20 of 156.
Sorted by year (citations)

1 2 3 ... 6 7 8 next

  1. Atlas, Abdelghafour; Bendahmane, Mostafa; Karami, Fahd; Meskine, Driss; Zagour, Mohamed: Kinetic-fluid derivation and mathematical analysis of a nonlocal cross-diffusion-fluid system (2020)
  2. Carrillo, José A.; Kalliadasis, Serafim; Perez, Sergio P.; Shu, Chi-Wang: Well-balanced finite-volume schemes for hydrodynamic equations with general free energy (2020)
  3. Delarue, François; Lagoutière, Frédéric; Vauchelet, Nicolas: Convergence analysis of upwind type schemes for the aggregation equation with pointy potential (2020)
  4. Loy, Nadia; Preziosi, Luigi: Kinetic models with non-local sensing determining cell polarization and speed according to independent cues (2020)
  5. Quenjel, El Houssaine; Saad, Mazen; Ghilani, Mustapha; Bessemoulin-Chatard, Marianne: Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations (2020)
  6. Shen, Jie; Xu, Jie: Unconditionally bound preserving and energy dissipative schemes for a class of Keller-Segel equations (2020)
  7. Burini, D.; Chouhad, N.: A multiscale view of nonlinear diffusion in biology: from cells to tissues (2019)
  8. Chertock, Alina; Kurganov, Alexander; Lukáčová-Medviďová, Mária; Özcan, Şeyma Nur: An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions (2019)
  9. Guarguaglini, Francesca Romana; Papi, Marco; Smarrazzo, Flavia: Local and global solutions for a hyperbolic-elliptic model of chemotaxis on a network (2019)
  10. Guillén-González, F.; Rodríguez-Bellido, M. A.; Rueda-Gómez, D. A.: Unconditionally energy stable fully discrete schemes for a chemo-repulsion model (2019)
  11. Guo, Li; Li, Xingjie Helen; Yang, Yang: Energy dissipative local discontinuous Galerkin methods for Keller-Segel chemotaxis model (2019)
  12. Hwang, Yao-Hsin; Yu, Jui-Ling; Hu, Chin-Kun: A method to solve the reaction-diffusion-chemotaxis system (2019)
  13. Sulman, M.; Nguyen, T.: A positivity preserving moving mesh finite element method for the Keller-Segel chemotaxis model (2019)
  14. Sulman, M.; Nguyen, T.: A positivity preserving adaptive moving mesh method for cancer cell invasion models (2019)
  15. Zeng, Xianyi; Saleh, Mashriq Ahmed; Tian, Jianjun Paul: On finite volume discretization of infiltration dynamics in tumor growth models (2019)
  16. Barbera, Elvira; Valenti, Giovanna: Wave features of a hyperbolic reaction-diffusion model for chemotaxis (2018)
  17. Bellouquid, Abdelghani; Tagoudjeu, Jacques: An asymptotic preserving scheme for kinetic models for chemotaxis phenomena (2018)
  18. Chen, Chiun-Chuan; Ha, Seung-Yeal; Zhang, Xiongtao: The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements (2018)
  19. Chertock, Alina; Epshteyn, Yekaterina; Hu, Hengrui; Kurganov, Alexander: High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems (2018)
  20. Guarguaglini, Francesca R.: Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network (2018)

1 2 3 ... 6 7 8 next