Seigtool

Structured EigTool Structured singular values and pseudospectra play an important role in assessing the properties of a linear system under structured perturbations. Structured Eigtool is a free Matlab interface for plotting structured pseudospectra. In particular, it supports the computation of real, skew-symmetric, Hermitian and Hamiltonian pseudospectra. Structured EigTool is heavily based on the EigTool [1] software package for plotting unstructured pseudospectra and inherits much of its interface.


References in zbMATH (referenced in 28 articles , 1 standard article )

Showing results 1 to 20 of 28.
Sorted by year (citations)

1 2 next

  1. Alonso, Pedro; Ibáñez, Javier; Sastre, Jorge; Peinado, Jesús; Defez, Emilio: Efficient and accurate algorithms for computing matrix trigonometric functions (2017)
  2. Aprahamian, Mary; Higham, Nicholas J.: Matrix inverse trigonometric and inverse hyperbolic functions: theory and algorithms (2016)
  3. Guglielmi, Nicola: On the method by Rostami for computing the real stability radius of large and sparse matrices (2016)
  4. Guglielmi, Nicola; Manetta, Manuela: An iterative method for computing robustness of polynomial stability (2016)
  5. Malinga, G.A.; Niedzwecki, J.M.: Modeling lightning strike behavior in the near field of elevated systems (2016)
  6. Buttà, P.; Guglielmi, N.; Manetta, M.; Noschese, S.: Differential equations for real-structured defectivity measures (2015)
  7. Guglielmi, Nicola; Kressner, Daniel; Lubich, Christian: Low rank differential equations for Hamiltonian matrix nearness problems (2015)
  8. Rostami, Minghao W.: New algorithms for computing the real structured pseudospectral abscissa and the real stability radius of large and sparse matrices (2015)
  9. Safdari-Vaighani, Ali; Heryudono, Alfa; Larsson, Elisabeth: A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications (2015)
  10. Benner, Peter; Voigt, Matthias: A structured pseudospectral method for $\mathcal H_\infty$-norm computation of large-scale descriptor systems (2014)
  11. Freitag, Melina A.; Spence, Alastair: A new approach for calculating the real stability radius (2014)
  12. Astudillo, R.; Castillo, Z.: Computing pseudospectra using block implicitly restarted Arnoldi iteration (2013)
  13. Li, Changpin; Zeng, Fanhai: The finite difference methods for fractional ordinary differential equations (2013)
  14. Paredes, Pedro; Hermanns, Miguel; Le Clainche, Soledad; Theofilis, Vassilis: Order $10^4$ speedup in global linear instability analysis using matrix formation (2013)
  15. Buttà, P.; Guglielmi, N.; Noschese, S.: Computing the structured pseudospectrum of a Toeplitz matrix and its extreme points (2012)
  16. Janovská, Drahoslava; Janovský, Vladimír; Tanabe, Kunio: A note on computation of pseudospectra (2012)
  17. Alam, Rafikul; Bora, Shreemayee; Byers, Ralph; Overton, Michael L.: Characterization and construction of the nearest defective matrix via coalescence of pseudospectral components (2011)
  18. Alam, R.; Bora, S.; Karow, M.; Mehrmann, V.; Moro, J.: Perturbation theory for Hamiltonian matrices and the distance to bounded-realness (2011)
  19. Lewis, Adrian S.; Pang, C.H.Jeffrey: Level set methods for finding critical points of mountain pass type (2011)
  20. Sastre, J.; Ibáñez, J.; Defez, E.; Ruiz, P.: Efficient orthogonal matrix polynomial based method for computing matrix exponential (2011)

1 2 next