Seigtool

Structured EigTool Structured singular values and pseudospectra play an important role in assessing the properties of a linear system under structured perturbations. Structured Eigtool is a free Matlab interface for plotting structured pseudospectra. In particular, it supports the computation of real, skew-symmetric, Hermitian and Hamiltonian pseudospectra. Structured EigTool is heavily based on the EigTool [1] software package for plotting unstructured pseudospectra and inherits much of its interface.


References in zbMATH (referenced in 26 articles , 1 standard article )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Aprahamian, Mary; Higham, Nicholas J.: Matrix inverse trigonometric and inverse hyperbolic functions: theory and algorithms (2016)
  2. Guglielmi, Nicola: On the method by Rostami for computing the real stability radius of large and sparse matrices (2016)
  3. Guglielmi, Nicola; Manetta, Manuela: An iterative method for computing robustness of polynomial stability (2016)
  4. Buttà, P.; Guglielmi, N.; Manetta, M.; Noschese, S.: Differential equations for real-structured defectivity measures (2015)
  5. Guglielmi, Nicola; Kressner, Daniel; Lubich, Christian: Low rank differential equations for Hamiltonian matrix nearness problems (2015)
  6. Rostami, Minghao W.: New algorithms for computing the real structured pseudospectral abscissa and the real stability radius of large and sparse matrices (2015)
  7. Safdari-Vaighani, Ali; Heryudono, Alfa; Larsson, Elisabeth: A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications (2015)
  8. Benner, Peter; Voigt, Matthias: A structured pseudospectral method for $\mathcal H_\infty$-norm computation of large-scale descriptor systems (2014)
  9. Freitag, Melina A.; Spence, Alastair: A new approach for calculating the real stability radius (2014)
  10. Astudillo, R.; Castillo, Z.: Computing pseudospectra using block implicitly restarted Arnoldi iteration (2013)
  11. Li, Changpin; Zeng, Fanhai: The finite difference methods for fractional ordinary differential equations (2013)
  12. Paredes, Pedro; Hermanns, Miguel; Le Clainche, Soledad; Theofilis, Vassilis: Order $10^4$ speedup in global linear instability analysis using matrix formation (2013)
  13. Buttà, P.; Guglielmi, N.; Noschese, S.: Computing the structured pseudospectrum of a Toeplitz matrix and its extreme points (2012)
  14. Janovská, Drahoslava; Janovský, Vladimír; Tanabe, Kunio: A note on computation of pseudospectra (2012)
  15. Alam, Rafikul; Bora, Shreemayee; Byers, Ralph; Overton, Michael L.: Characterization and construction of the nearest defective matrix via coalescence of pseudospectral components (2011)
  16. Alam, R.; Bora, S.; Karow, M.; Mehrmann, V.; Moro, J.: Perturbation theory for Hamiltonian matrices and the distance to bounded-realness (2011)
  17. Lewis, Adrian S.; Pang, C.H.Jeffrey: Level set methods for finding critical points of mountain pass type (2011)
  18. Sastre, J.; Ibáñez, J.; Defez, E.; Ruiz, P.: Efficient orthogonal matrix polynomial based method for computing matrix exponential (2011)
  19. Sidje, Roger B.: On the simultaneous tridiagonalization of two symmetric matrices (2011)
  20. Al-Mohy, Awad H.; Higham, Nicholas J.: A new scaling and squaring algorithm for the matrix exponential (2010)

1 2 next