References in zbMATH (referenced in 92 articles )

Showing results 1 to 20 of 92.
Sorted by year (citations)

1 2 3 4 5 next

  1. Eun-Kyung Lee: PPtreeViz: An R Package for Visualizing Projection Pursuit Classification Trees (2018)
  2. Muñoz, Mario A.; Villanova, Laura; Baatar, Davaatseren; Smith-Miles, Kate: Instance spaces for machine learning classification (2018)
  3. Peter Calhoun; Xiaogang Su;Martha Nunn; Juanjuan Fan: Constructing Multivariate Survival Trees: The MST Package for R (2018)
  4. Zhao, Xin; Barber, Stuart; Taylor, Charles C.; Milan, Zoka: Classification tree methods for panel data using wavelet-transformed time series (2018)
  5. Alvarez-Iglesias, Alberto; Hinde, John; Ferguson, John; Newell, John: An alternative pruning based approach to unbiased recursive partitioning (2017)
  6. Baumer, Benjamin S.; Kaplan, Daniel T.; Horton, Nicholas J.: Modern data science with R (2017)
  7. Berrar, Daniel: Confidence curves: an alternative to null hypothesis significance testing for the comparison of classifiers (2017)
  8. Bertsimas, Dimitris; Dunn, Jack: Optimal classification trees (2017)
  9. Bilton, Penny; Jones, Geoff; Ganesh, Siva; Haslett, Steve: Classification trees for poverty mapping (2017)
  10. Conversano, Claudio; Dusseldorp, Elise: Modeling threshold interaction effects through the logistic classification trunk (2017)
  11. Deprez, Philippe; Shevchenko, Pavel V.; Wüthrich, Mario V.: Machine learning techniques for mortality modeling (2017)
  12. Doove, Lisa L.; Wilderjans, Tom F.; Calcagnì, Antonio; Van Mechelen, Iven: Deriving optimal data-analytic regimes from benchmarking studies (2017)
  13. Ghesmoune, Mohammed; Azzag, Hanene; Benbernou, Salima; Lebbah, Mustapha; Duong, Tarn; Ouziri, Mourad: Big Data: from collection to visualization (2017)
  14. Gong, Joonho; Kim, Hyunjoong: Rhsboost: improving classification performance in imbalance data (2017)
  15. Hajjem, Ahlem; Larocque, Denis; Bellavance, François: Generalized mixed effects regression trees (2017)
  16. Hayes, Timothy; McArdle, John J.: Should we impute or should we weight? examining the performance of two CART-based techniques for addressing missing data in small sample research with nonnormal variables (2017)
  17. He Zhao and Graham Williams and Joshua Huang: wsrf: An R Package for Classification with Scalable Weighted Subspace Random Forests (2017)
  18. Marjolein Fokkema: pre: An R Package for Fitting Prediction Rule Ensembles (2017) arXiv
  19. Ott, Armin; Hapfelmeier, Alexander: Nonparametric subgroup identification by PRIM and CART: a simulation and application study (2017)
  20. Reto Bürgin; Gilbert Ritschard: Coefficient-Wise Tree-Based Varying Coefficient Regression with vcrpart (2017)

1 2 3 4 5 next