VEGAS
The vegas algorithm of Lepage is based on importance sampling. It samples points from the probability distribution described by the function |f|, so that the points are concentrated in the regions that make the largest contribution to the integral.
Keywords for this software
References in zbMATH (referenced in 49 articles , 1 standard article )
Showing results 1 to 20 of 49.
Sorted by year (- Capatti, Zeno; Hirschi, Valentin; Kermanschah, Dario; Pelloni, Andrea; Ruijl, Ben: Numerical loop-tree duality: contour deformation and subtraction (2020)
- G. Peter Lepage: Adaptive Multidimensional Integration: VEGAS Enhanced (2020) arXiv
- Karasözen, Ezgi; Karasözen, Bülent: Earthquake location methods (2020)
- R.A. Kycia, P. Lebiedowicz, A. Szczurek: Decay: A Monte Carlo library for the decay of a particle with ROOT compatibility (2020) arXiv
- Serone, Marco; Spada, Gabriele; Villadoro, Giovanni: (\lambda\phi^4) theory. II: The broken phase beyond NNNN(NNNN)LO (2019)
- Boels, Rutger H.; Huber, Tobias; Yang, Gang: The Sudakov form factor at four loops in maximal super Yang-Mills theory (2018)
- Borowka, Sophia; Gehrmann, Thomas; Hulme, Daniel: Systematic approximation of multi-scale Feynman integrals (2018)
- Gituliar, O.; Magerya, V.; Pikelner, A.: Five-particle phase-space integrals in QCD (2018)
- Serone, Marco; Spada, Gabriele; Villadoro, Giovanni: (\lambda\theta^4) theory.I: The symmetric phase beyond NNNNNNNNLO (2018)
- Ghosh, Pranab; Liu, Lingyun; Senchaudhuri, P.; Gao, Ping; Mehta, Cyrus: Design and monitoring of multi-arm multi-stage clinical trials (2017)
- Kawai, Reiichiro: Acceleration on adaptive importance sampling with sample average approximation (2017)
- Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.: Gravity-mediated dark matter annihilation in the Randall-Sundrum model (2017)
- Ayala, César; Cvetič, Gorazd: \textttanQCD: \textttFortranprograms for couplings at complex momenta in various analytic QCD models (2016)
- De Luigi, Christophe; Lelong, Jérôme; Maire, Sylvain: Robust adaptive numerical integration of irregular functions with applications to basket and other multi-dimensional exotic options (2016)
- Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong: Reinforcement learning solution for HJB equation arising in constrained optimal control problem (2015)
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.-S.; Stelzer, T.; Torrielli, P.; Zaro, M.: The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations (2014)
- Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong: Data-based approximate policy iteration for affine nonlinear continuous-time optimal control design (2014)
- Adler, Stephen L.: The guide to PAMIR. Theory and use of parameterized adaptive multidimensional integration routines (2013)
- Belyaev, Alexander; Christensen, Neil D.; Pukhov, Alexander: CalcHEP 3.4 for collider physics within and beyond the standard model (2013)
- Kersevan, Borut Paul; Richter-Wąs, Elzbieta: The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1 (2013)