ARPREC: An arbitrary precision computation package. This paper describes a new software package for performing arithmetic with an arbitrarily high level of numeric precision. It is based on the earlier MPFUN package cite mpf90, enhanced with special IEEE floating-point numerical techniques and several new functions. This package is written in C++ code for high performance and broad portability and includes both C++ and Fortran-90 translation modules, so that conventional C++ and Fortran-90 programs can utilize the package with only very minor changes. This paper includes a survey of some of the interesting applications of this package and its predecessors

References in zbMATH (referenced in 49 articles )

Showing results 1 to 20 of 49.
Sorted by year (citations)

1 2 3 next

  1. Fasi, Massimiliano; Higham, Nicholas J.: Multiprecision algorithms for computing the matrix logarithm (2018)
  2. Muller, Jean-Michel; Brunie, Nicolas; de Dinechin, Florent; Jeannerod, Claude-Pierre; Joldes, Mioara; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Torres, Serge: Handbook of floating-point arithmetic (2018)
  3. Xue, Jungong; Li, Ren-Cang: Highly accurate doubling algorithms for $M$-matrix algebraic Riccati equations (2017)
  4. Bangay, Shaun; Beliakov, Gleb: On the fast Lanczos method for computation of eigenvalues of Hankel matrices using multiprecision arithmetics. (2016)
  5. Muller, Jean-Michel: Elementary functions. Algorithms and implementation (2016)
  6. Bailey, D. H.; Borwein, J. M.: Computation and theory of Mordell-Tornheim-Witten sums. II. (2015)
  7. Li, Wei; Luo, Li-Shi; Shen, Jie: Accurate solution and approximations of the linearized BGK equation for steady Couette flow (2015)
  8. Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.: Computation and theory of extended Mordell-Tornheim-Witten sums (2014)
  9. Fernández-Torres, Gustavo: Derivative free iterative methods with memory of arbitrary high convergence order (2014)
  10. Khattri, Sanjay K.; Steihaug, Trond: Algorithm for forming derivative-free optimal methods (2014)
  11. Khattri, Sanjay Kumar: How to increase convergence order of the Newton method to $2\times m$? (2014)
  12. Bailey, D. H.; Borwein, J. M.; Crandall, R. E.; Zucker, I. J.: Lattice sums arising from the Poisson equation (2013)
  13. Khattri, Sanjay K.; Argyros, Ioannis K.: Unification of sixth-order iterative methods (2013)
  14. Kuhlman, Kristopher L.: Review of inverse Laplace transform algorithms for Laplace-space numerical approaches (2013)
  15. Rump, Siegfried M.: Accurate solution of dense linear systems I: Algorithms in rounding to nearest (2013)
  16. Tsai, Chia-Cheng; Lin, Po-Ho: On the exponential convergence of the method of fundamental solutions (2013)
  17. Tsai, Chia-Cheng; Young, D. L.: Using the method of fundamental solutions for obtaining exponentially convergent Helmholtz eigensolutions (2013)
  18. Bailey, D. H.; Barrio, R.; Borwein, J. M.: High-precision computation: mathematical physics and dynamics (2012)
  19. Bruinier, Jan H.; Strömberg, Fredrik: Computation of harmonic weak Maass forms (2012)
  20. Chevillard, S.: The functions erf and erfc computed with arbitrary precision and explicit error bounds (2012)

1 2 3 next