Software library that aims to provide a set of flexible C++ modules designed for rigorous numerics in dynamical systems. The CAPD library is a collection of flexible C++ modules which are mainly designed to computation of homology of sets and maps and nonrigorous and validated numerics for dynamical systems. It is distributed under the terms of GNU GPL license.

References in zbMATH (referenced in 45 articles )

Showing results 1 to 20 of 45.
Sorted by year (citations)

1 2 3 next

  1. Sogokon, Andrew; Jackson, Paul B.; Johnson, Taylor T.: Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants (2019)
  2. Balázs, István; van den Berg, Jan Bouwe; Courtois, Julien; Dudás, János; Lessard, Jean-Philippe; Vörös-Kiss, Anett; Williams, J. F.; Yin, Xi Yuan: Computer-assisted proofs for radially symmetric solutions of PDEs (2018)
  3. Kalies, William D.; Kasti, Dinesh; Vandervorst, Robert: An algorithmic approach to lattices and order in dynamics (2018)
  4. Rohou, Simon; Jaulin, Luc; Mihaylova, Lyudmila; Le Bars, Fabrice; Veres, Sandor M.: Reliable nonlinear state estimation involving time uncertainties (2018)
  5. Villegas Pico, Hugo Nestor; Aliprantis, Dionysios C.: Reachability analysis of linear dynamic systems with constant, arbitrary, and Lipschitz continuous inputs (2018)
  6. Figueras, J.-Ll.; Haro, A.; Luque, A.: Rigorous computer-assisted application of KAM theory: a modern approach (2017)
  7. Gonzalez-Lorenzo, Aldo; Bac, Alexandra; Mari, Jean-Luc; Real, Pedro: Allowing cycles in discrete Morse theory (2017)
  8. Kapela, Tomasz; Simó, Carles: Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems (2017)
  9. Belova, Anna: Rigorous enclosures of rotation numbers by interval methods (2016)
  10. Czechowski, Aleksander; Zgliczyński, Piotr: Existence of periodic solutions of the Fitzhugh-Nagumo equations for an explicit range of the small parameter (2016)
  11. Gonzalez-Lorenzo, Aldo; Juda, Mateusz; Bac, Alexandra; Mari, Jean-Luc; Real, Pedro: Fast, simple and separable computation of Betti numbers on three-dimensional cubical complexes (2016)
  12. Haro, Àlex; Canadell, Marta; Figueras, Jordi-Lluís; Luque, Alejandro; Mondelo, Josep-Maria: The parameterization method for invariant manifolds. From rigorous results to effective computations (2016)
  13. Miyaji, Tomoyuki; Pilarczyk, Paweł; Gameiro, Marcio; Kokubu, Hiroshi; Mischaikow, Konstantin: A study of rigorous ODE integrators for multi-scale set-oriented computations (2016)
  14. van den Berg, Jan Bouwe; Mireles James, Jason D.; Reinhardt, Christian: Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra (2016)
  15. Weilandt, Frank; Mrozek, Marian; Mischaikow, Konstantin: Discretization strategies for computing Conley indices and Morse decompositions of flows (2016)
  16. Wilczak, Daniel; Serrano, Sergio; Barrio, Roberto: Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: a computer-assisted proof (2016)
  17. Wilczak, Daniel; Zgliczyński, Piotr: Connecting orbits for a singular nonautonomous real Ginzburg-Landau type equation (2016)
  18. Zeppelzauer, Matthias; Zieliński, Bartosz; Juda, Mateusz; Seidl, Markus: Topological descriptors for 3D surface analysis (2016)
  19. Barrio, Roberto; Dena, Angeles; Tucker, Warwick: A database of rigorous and high-precision periodic orbits of the Lorenz model (2015)
  20. Bartha, Ferenc A.; Tucker, Warwick: Fixed points of a destabilized Kuramoto-Sivashinsky equation (2015)

1 2 3 next