CAPD

Software library that aims to provide a set of flexible C++ modules designed for rigorous numerics in dynamical systems. The CAPD library is a collection of flexible C++ modules which are mainly designed to computation of homology of sets and maps and nonrigorous and validated numerics for dynamical systems. It is distributed under the terms of GNU GPL license.


References in zbMATH (referenced in 36 articles )

Showing results 1 to 20 of 36.
Sorted by year (citations)

1 2 next

  1. Figueras, J.-Ll.; Haro, A.; Luque, A.: Rigorous computer-assisted application of KAM theory: a modern approach (2017)
  2. Gonzalez-Lorenzo, Aldo; Bac, Alexandra; Mari, Jean-Luc; Real, Pedro: Allowing cycles in discrete Morse theory (2017)
  3. Belova, Anna: Rigorous enclosures of rotation numbers by interval methods (2016)
  4. Czechowski, Aleksander; Zgliczyński, Piotr: Existence of periodic solutions of the Fitzhugh-Nagumo equations for an explicit range of the small parameter (2016)
  5. Gonzalez-Lorenzo, Aldo; Juda, Mateusz; Bac, Alexandra; Mari, Jean-Luc; Real, Pedro: Fast, simple and separable computation of Betti numbers on three-dimensional cubical complexes (2016)
  6. Haro, Àlex; Canadell, Marta; Figueras, Jordi-Lluís; Luque, Alejandro; Mondelo, Josep-Maria: The parameterization method for invariant manifolds. From rigorous results to effective computations (2016)
  7. van den Berg, Jan Bouwe; Mireles James, Jason D.; Reinhardt, Christian: Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra (2016)
  8. Weilandt, Frank; Mrozek, Marian; Mischaikow, Konstantin: Discretization strategies for computing Conley indices and Morse decompositions of flows (2016)
  9. Wilczak, Daniel; Serrano, Sergio; Barrio, Roberto: Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: a computer-assisted proof (2016)
  10. Wilczak, Daniel; Zgliczyński, Piotr: Connecting orbits for a singular nonautonomous real Ginzburg-Landau type equation (2016)
  11. Zeppelzauer, Matthias; Zieliński, Bartosz; Juda, Mateusz; Seidl, Markus: Topological descriptors for 3D surface analysis (2016)
  12. Barrio, Roberto; Dena, Angeles; Tucker, Warwick: A database of rigorous and high-precision periodic orbits of the Lorenz model (2015)
  13. Knipl, Diána H.; Pilarczyk, Paweł; Röst, Gergely: Rich bifurcation structure in a two-patch vaccination model (2015)
  14. Mireles James, J.D.: Computer assisted error bounds for linear approximation of (un)stable manifolds and rigorous validation of higher dimensional transverse connecting orbits (2015)
  15. Mrozek, Marian; Srzednicki, Roman; Weilandt, Frank: A topological approach to the algorithmic computation of the Conley index for Poincaré maps (2015)
  16. Pilarczyk, Paweł; Real, Pedro: Computation of cubical homology, cohomology, and (co)homological operations via chain contraction (2015)
  17. van den Berg, Jan Bouwe; Lessard, Jean-Philippe: Rigorous numerics in dynamics (2015)
  18. Bartha, Ferenc A.; Garab, Ábel: Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model (2014)
  19. Bartha, Ferenc A.; Munthe-Kaas, Hans Z.: Computing of B-series by automatic differentiation (2014)
  20. Cyranka, Jacek: Efficient and generic algorithm for rigorous integration forward in time of dPDEs. I (2014)

1 2 next