AProVE

AProVE 1.2: Automatic Termination Proofs in the Dependency Pair Framework. AProVE 1.2 is one of the most powerful systems for automated termination proofs of term rewrite systems (TRSs). It is the first tool which automates the new dependency pair framework [8] and therefore permits a completely flexible combination of different termination proof techniques. Due to this framework, AProVE 1.2 is also the first termination prover which can be fully configured by the user.


References in zbMATH (referenced in 104 articles )

Showing results 1 to 20 of 104.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Corzilius, Florian; Kremer, Gereon; Junges, Sebastian; Schupp, Stefan; Ábrahám, Erika: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving (2015)
  2. Kuwahara, Takuya; Terauchi, Tachio; Unno, Hiroshi; Kobayashi, Naoki: Automatic termination verification for higher-order functional programs (2014)
  3. Leuschel, Michael; Vidal, Germán: Fast offline partial evaluation of logic programs (2014)
  4. Schmidt-Schauß, Manfred: Concurrent programming languages and methods for semantic analyses (extended abstract of invited talk) (2014)
  5. Babić, Domagoj; Cook, Byron; Hu, Alan J.; Rakamarić, Zvonimir: Proving termination of nonlinear command sequences (2013)
  6. Bofill, Miquel; Borralleras, Cristina; Rodríguez-Carbonell, Enric; Rubio, Albert: The recursive path and polynomial ordering for first-order and higher-order terms (2013)
  7. Giesl, Jürgen; Ströder, Thomas; Schneider-Kamp, Peter; Emmes, Fabian; Fuhs, Carsten: Symbolic evaluation graphs and term rewriting -- a general methodology for analyzing logic programs. (Abstract) (2013)
  8. Winkler, Sarah; Sato, Haruhiko; Middeldorp, Aart; Kurihara, Masahito: Multi-completion with termination tools (2013)
  9. Borralleras, Cristina; Lucas, Salvador; Oliveras, Albert; Rodríguez-Carbonell, Enric; Rubio, Albert: SAT modulo linear arithmetic for solving polynomial constraints (2012)
  10. Bouhoula, Adel; Jacquemard, Florent: Sufficient completeness verification for conditional and constrained TRS (2012)
  11. Codish, Michael; Giesl, Jürgen; Schneider-Kamp, Peter; Thiemann, René: SAT solving for termination proofs with recursive path orders and dependency pairs (2012)
  12. Meseguer, José: Twenty years of rewriting logic (2012)
  13. Brockschmidt, Marc; Otto, Carsten; Giesl, Jürgen: Modular termination proofs of recursive Java bytecode programs by term rewriting (2011)
  14. Durand, Irène; Sylvestre, Marc: Left-linear bounded TRSs are inverse recognizability preserving (2011)
  15. Endrullis, Jörg; Hendriks, Dimitri: Lazy productivity via termination (2011)
  16. Fuhs, Carsten; Giesl, Jürgen; Parting, Michael; Schneider-Kamp, Peter; Swiderski, Stephan: Proving termination by dependency pairs and inductive theorem proving (2011)
  17. Fuhs, Carsten; Kop, Cynthia: Harnessing first order termination provers using higher order dependency pairs (2011)
  18. Stump, Aaron; Kimmell, Garrin; El Haj Omar, Roba: Type preservation as a confluence problem (2011)
  19. Voets, Dean; De Schreye, Danny: Non-termination analysis of logic programs with integer arithmetics (2011)
  20. Alarcón, Beatriz; Gutiérrez, Raúl; Lucas, Salvador: Context-sensitive dependency pairs (2010)

1 2 3 4 5 6 next


Further publications can be found at: http://aprove.informatik.rwth-aachen.de/index.asp?subform=references.html