References in zbMATH (referenced in 26 articles )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Cox, Marco; van de Laar, Thijs; de Vries, Bert: A factor graph approach to automated design of Bayesian signal processing algorithms (2019)
  2. Jan Luts; Shen Wang; John Ormerod; Matt Wand: Semiparametric Regression Analysis via Infer.NET (2018) not zbMATH
  3. Kim, Andy S. I.; Wand, Matt P.: On expectation propagation for generalised, linear and mixed models (2018)
  4. Chistikov, Dmitry; Dimitrova, Rayna; Majumdar, Rupak: Approximate counting in SMT and value estimation for probabilistic programs (2017)
  5. Culpepper, Ryan; Cobb, Andrew: Contextual equivalence for probabilistic programs with continuous random variables and scoring (2017)
  6. Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor, Daniel Tarlow: TerpreT: A Probabilistic Programming Language for Program Induction (2016) arXiv
  7. Huang, Daniel; Morrisett, Greg: An application of computable distributions to the semantics of probabilistic programming languages (2016)
  8. Kim, Andy S. I.; Wand, M. P.: The explicit form of expectation propagation for a simple statistical model (2016)
  9. Kiselyov, Oleg: Probabilistic programming language and its incremental evaluation (2016)
  10. Lee, Cathy Yuen Yi; Wand, Matt P.: Streamlined mean field variational Bayes for longitudinal and multilevel data analysis (2016)
  11. Luttinen, Jaakko: BayesPy: variational Bayesian inference in Python (2016)
  12. Menictas, Marianne; Wand, Matt P.: Variational inference for heteroscedastic semiparametric regression (2015)
  13. Su, Hao; Yu, Adams Wei: Probabilistic modeling of scenes using object frames (2015) ioport
  14. Hoffman, Matthew D.; Gelman, Andrew: The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo (2014)
  15. Kim, Sungchul; Qin, Tao; Liu, Tie-Yan; Yu, Hwanjo: Advertiser-centric approach to understand user click behavior in sponsored search (2014) ioport
  16. Parson, Oliver; Ghosh, Siddhartha; Weal, Mark; Rogers, Alex: An unsupervised training method for non-intrusive appliance load monitoring (2014) ioport
  17. Bishop, Christopher M.: Model-based machine learning (2013)
  18. Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; Van Gael, Jurgen: Measure transformer semantics for Bayesian machine learning (2013)
  19. Bettina Grün; Kurt Hornik: topicmodels: An R Package for Fitting Topic Models (2011) not zbMATH
  20. Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; Van Gael, Jurgen: Measure transformer semantics for Bayesian machine learning (2011)

1 2 next