References in zbMATH (referenced in 21 articles )

Showing results 1 to 20 of 21.
Sorted by year (citations)

1 2 next

  1. Kim, Andy S. I.; Wand, Matt P.: On expectation propagation for generalised, linear and mixed models (2018)
  2. Chistikov, Dmitry; Dimitrova, Rayna; Majumdar, Rupak: Approximate counting in SMT and value estimation for probabilistic programs (2017)
  3. Culpepper, Ryan; Cobb, Andrew: Contextual equivalence for probabilistic programs with continuous random variables and scoring (2017)
  4. Huang, Daniel; Morrisett, Greg: An application of computable distributions to the semantics of probabilistic programming languages (2016)
  5. Kim, Andy S. I.; Wand, M. P.: The explicit form of expectation propagation for a simple statistical model (2016)
  6. Kiselyov, Oleg: Probabilistic programming language and its incremental evaluation (2016)
  7. Lee, Cathy Yuen Yi; Wand, Matt P.: Streamlined mean field variational Bayes for longitudinal and multilevel data analysis (2016)
  8. Luttinen, Jaakko: BayesPy: variational Bayesian inference in Python (2016)
  9. Menictas, Marianne; Wand, Matt P.: Variational inference for heteroscedastic semiparametric regression (2015)
  10. Su, Hao; Yu, Adams Wei: Probabilistic modeling of scenes using object frames (2015) ioport
  11. Kim, Sungchul; Qin, Tao; Liu, Tie-Yan; Yu, Hwanjo: Advertiser-centric approach to understand user click behavior in sponsored search (2014) ioport
  12. Parson, Oliver; Ghosh, Siddhartha; Weal, Mark; Rogers, Alex: An unsupervised training method for non-intrusive appliance load monitoring (2014)
  13. Bishop, Christopher M.: Model-based machine learning (2013)
  14. Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; Van Gael, Jurgen: Measure transformer semantics for Bayesian machine learning (2013)
  15. Bettina Grün; Kurt Hornik: topicmodels: An R Package for Fitting Topic Models (2011)
  16. Borgström, Johannes; Gordon, Andrew D.; Greenberg, Michael; Margetson, James; Van Gael, Jurgen: Measure transformer semantics for Bayesian machine learning (2011)
  17. Delatola, Eleni-Ioanna; Griffin, Jim E.: Bayesian nonparametric modelling of the return distribution with stochastic volatility (2011)
  18. Hall, Peter; Pham, Tung; Wand, M. P.; Wang, S. S. J.: Asymptotic normality and valid inference for Gaussian variational approximation (2011)
  19. Ormerod, John T.: Grid based variational approximations (2011)
  20. Wand, M. P.; Ormerod, J. T.: Penalized wavelets: embedding wavelets into semiparametric regression (2011)

1 2 next