Triangle

Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. Triangle generates exact Delaunay triangulations, constrained Delaunay triangulations, conforming Delaunay triangulations, Voronoi diagrams, and high-quality triangular meshes. The latter can be generated with no small or large angles, and are thus suitable for finite element analysis. Triangle (version 1.6, with Show Me version 1.6) is available as a .zip file (159K) or as a .shar file (829K) (extract with sh) from Netlib in the voronoi directory. Please note that although Triangle is freely available, it is copyrighted by the author and may not be sold or included in commercial products without a license.


References in zbMATH (referenced in 310 articles )

Showing results 1 to 20 of 310.
Sorted by year (citations)

1 2 3 ... 14 15 16 next

  1. Ahmadian, Hossein; Yang, Ming; Nagarajan, Anand; Soghrati, Soheil: Effects of shape and misalignment of fibers on the failure response of carbon fiber reinforced polymers (2019)
  2. Berrone, S.; D’Auria, A.; Vicini, F.: Fast and robust flow simulations in discrete fracture networks with gpgpus (2019)
  3. Berrone, S.; Scialò, S.; Vicini, F.: Parallel meshing, discretization, and computation of flow in massive discrete fracture networks (2019)
  4. Candiani, Valentina; Hannukainen, Antti; Hyvönen, Nuutti: Computational framework for applying electrical impedance tomography to head imaging (2019)
  5. Fumagalli, Alessio; Keilegavlen, Eirik; Scialò, Stefano: Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations (2019)
  6. Liang, Bowen; Nagarajan, Anand; Soghrati, Soheil: Scalable parallel implementation of CISAMR: a non-iterative mesh generation algorithm (2019)
  7. Mohapatra, Debasis; Kumar, Jyant: Smoothed finite element approach for kinematic limit analysis of cohesive frictional materials (2019)
  8. Morales-Hernández, M.; Zuazua, E.: Adjoint computational methods for 2D inverse design of linear transport equations on unstructured grids (2019)
  9. Murphy, Thomas J.; Walkington, Noel J.: Control volume approximation of degenerate two-phase porous flows (2019)
  10. Ortiz-Bernardin, A.; Alvarez, C.; Hitschfeld-Kahler, N.; Russo, A.; Silva-Valenzuela, R.; Olate-Sanzana, E.: Veamy: an extensible object-oriented C++ library for the virtual element method (2019)
  11. Pingaro, M.; Reccia, E.; Trovalusci, P.; Masiani, R.: Fast statistical homogenization procedure (FSHP) for particle random composites using virtual element method (2019)
  12. Tao, Jiong; Deng, Bailin; Zhang, Juyong: A fast numerical solver for local barycentric coordinates (2019)
  13. Araya, Rodolfo; Rebolledo, Ramiro: An a posteriori error estimator for a LPS method for Navier-Stokes equations (2018)
  14. Canevari, Giacomo; Segatti, Antonio: Defects in nematic shells: a (\Gamma)-convergence discrete-to-continuum approach (2018)
  15. Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit: Functional data approximation on bounded domains using polygonal finite elements (2018)
  16. Chaumont-Frelet, T.; Nicaise, S.: High-frequency behaviour of corner singularities in Helmholtz problems (2018)
  17. Chen, Renjie; Gotsman, Craig; Hormann, Kai: Path planning with divergence-based distance functions (2018)
  18. Dell’Accio, F.; Di Tommaso, F.; Nouisser, O.; Zerroudi, B.: Increasing the approximation order of the triangular Shepard method (2018)
  19. Dzikowski, Michal; Jasinski, Lukasz; Dabrowski, Marcin: Depth-averaged lattice Boltzmann and finite element methods for single-phase flows in fractures with obstacles (2018)
  20. Eder, Günther; Held, Martin; Palfrader, Peter: Parallelized ear clipping for the triangulation and constrained Delaunay triangulation of polygons (2018)

1 2 3 ... 14 15 16 next