kernlab: Kernel-based Machine Learning Lab. Kernel-based machine learning methods for classification, regression, clustering, novelty detection, quantile regression and dimensionality reduction. Among other methods kernlab includes Support Vector Machines, Spectral Clustering, Kernel PCA, Gaussian Processes and a QP solver

References in zbMATH (referenced in 32 articles )

Showing results 1 to 20 of 32.
Sorted by year (citations)

1 2 next

  1. Bang, Sungwan; Eo, Soo-Heang; Cho, Yong Mee; Jhun, Myoungshic; Cho, HyungJun: Non-crossing weighted kernel quantile regression with right censored data (2016)
  2. Bischl, Bernd; Kerschke, Pascal; Kotthoff, Lars; Lindauer, Marius; Malitsky, Yuri; Fréchette, Alexandre; Hoos, Holger; Hutter, Frank; Leyton-Brown, Kevin; Tierney, Kevin; Vanschoren, Joaquin: ASlib: a benchmark library for algorithm selection (2016)
  3. Sokolovska, Nataliya; Clément, Karine; Zucker, Jean-Daniel: Deep kernel dimensionality reduction for scalable data integration (2016)
  4. Cichosz, Paweł: Data mining algorithms. Explained using R (2015)
  5. Fernandez-Lozano, Carlos; Cuiñas, Rubén F.; Seoane, José A.; Fernández-Blanco, Enrique; Dorado, Julian; Munteanu, Cristian R.: Classification of signaling proteins based on molecular star graph descriptors using machine learning models (2015)
  6. Härdle, Wolfgang Karl; Hlávka, Zdeněk: Multivariate statistics. Exercises and solutions (2015)
  7. Arratia, Argimiro: Computational finance. An introductory course with R (2014)
  8. Krawczyk, Bartosz; Woźniak, Michał; Cyganek, Bogusław: Clustering-based ensembles for one-class classification (2014)
  9. Krey, Sebastian; Ligges, Uwe; Leisch, Friedrich: Music and timbre segmentation by recursive constrained $K$-means clustering (2014)
  10. Sabo, Miroslav: Consensus clustering with differential evolution (2014)
  11. Weihs, Claus; Mersmann, Olaf; Ligges, Uwe: Foundations of statistical algorithms. With references to R packages (2014)
  12. Kanamori, Takafumi; Suzuki, Taiji; Sugiyama, Masashi: Computational complexity of kernel-based density-ratio estimation: a condition number analysis (2013)
  13. Kawakita, Masanori; Kanamori, Takafumi: Semi-supervised learning with density-ratio estimation (2013)
  14. Kuhn, Max; Johnson, Kjell: Applied predictive modeling (2013)
  15. Taddy, Matt: Multinomial inverse regression for text analysis (2013)
  16. Cano, Emilio L.; Moguerza, Javier M.; Redchuk, Andrés: Six Sigma with R. Statistical engineering for process improvement. (2012)
  17. Xie, Shengkun; Lawniczak, Anna T.; Krishnan, Sridhar; Lio, Pietro: Wavelet kernel principal component analysis in noisy multiscale data classification (2012)
  18. Yao, Lei; Suryanarayan, Poonam; Qiao, Mu; Wang, James Z.; Li, Jia: OSCAR: on-site composition and aesthetics feedback through exemplars for photographers (2012)
  19. Bücher, Axel; Dette, Holger; Volgushev, Stanislav: New estimators of the Pickands dependence function and a test for extreme-value dependence (2011)
  20. Domijan, Katarina; Wilson, Simon P.: Bayesian kernel projections for classification of high dimensional data (2011)

1 2 next