RegularChains

The RegularChains library in Maple 10. The RegularChains library provides facilities for symbolic computations with systems of polynomial equations. In particular, it allows to compute modulo a set of algebraic relations. Automatic case discussion (and recombination) handles zero-divisors and parameters. This permits triangular decomposition of polynomial equations


References in zbMATH (referenced in 66 articles , 1 standard article )

Showing results 1 to 20 of 66.
Sorted by year (citations)

1 2 3 4 next

  1. Bradford, Russell; Davenport, James H.; England, Matthew; Errami, Hassan; Gerdt, Vladimir; Grigoriev, Dima; Hoyt, Charles; Košta, Marek; Radulescu, Ovidiu; Sturm, Thomas; Weber, Andreas: Identifying the parametric occurrence of multiple steady states for some biological networks (2020)
  2. Guo, Feng; Phạm, Ti’ên-Son: On types of degenerate critical points of real polynomial functions (2020)
  3. Amzallag, Eli; Sun, Mengxiao; Pogudin, Gleb; Vo, Thieu N.: Complexity of triangular representations of algebraic sets (2019)
  4. England, Matthew; Florescu, Dorian: Comparing machine learning models to choose the variable ordering for cylindrical algebraic decomposition (2019)
  5. Harris, Corey; Michałek, Mateusz; Sertöz, Emre Can: Computing images of polynomial maps (2019)
  6. Huang, Zongyan; England, Matthew; Wilson, David J.; Bridge, James; Davenport, James H.; Paulson, Lawrence C.: Using machine learning to improve cylindrical algebraic decomposition (2019)
  7. Schreck, Pascal: On the mechanization of straightedge and compass constructions (2019)
  8. Cifuentes, Diego; Parrilo, Pablo A.: Chordal networks of polynomial ideals (2017)
  9. Corless, Robert M.; Moreno Maza, Marc; Thornton, Steven E.: Jordan canonical form with parameters from Frobenius form with parameters (2017)
  10. Davenport, James H.: What does “without loss of generality” mean, and how do we detect it (2017)
  11. Dong, Rina; Mou, Chenqi: Decomposing polynomial sets simultaneously into Gröbner bases and normal triangular sets (2017)
  12. Han, Jingjun; Dai, Liyun; Hong, Hoon; Xia, Bican: Open weak CAD and its applications (2017)
  13. Liang, Quanyi; She, Zhikun; Wang, Lei; Chen, Michael Z. Q.; Wang, Qing-Guo: Characterizations and criteria for synchronization of heterogeneous networks to linear subspaces (2017)
  14. Alvandi, Parisa; Kazemi, Mahsa; Maza, Marc Moreno: Computing limits with the RegularChains and PowerSeries libraries: from rational functions to Zariski closure (2016)
  15. Bradford, Russell; Davenport, James H.; England, Matthew; McCallum, Scott; Wilson, David: Truth table invariant cylindrical algebraic decomposition (2016)
  16. Brunat, Josep M.; Montes, Antonio: Computing the canonical representation of constructible sets (2016)
  17. Chen, Changbo; Moreno Maza, Marc: Quantifier elimination by cylindrical algebraic decomposition based on regular chains (2016)
  18. England, Matthew; Davenport, James H.: The complexity of cylindrical algebraic decomposition with respect to polynomial degree (2016)
  19. Robertz, Daniel: Formal algorithmic elimination for PDEs (2016)
  20. Boulier, Francois; Han, M.; Lemaire, Francois; Romanovski, Valery G.: Qualitative investigation of a gene model using computer algebra algorithms (2015)

1 2 3 4 next


Further publications can be found at: http://www.regularchains.org/publications.html