References in zbMATH (referenced in 60 articles )

Showing results 1 to 20 of 60.
Sorted by year (citations)

1 2 3 next

  1. Bildosola, Iñaki; Garechana, Gaizka; Zarrabeitia, Enara; Cilleruelo, Ernesto: Characterization of strategic emerging technologies: the case of big data (2020)
  2. Nystrup, Peter; Lindström, Erik; Pinson, Pierre; Madsen, Henrik: Temporal hierarchies with autocorrelation for load forecasting (2020)
  3. Cerqueira, Vitor; Torgo, Luís; Pinto, Fábio; Soares, Carlos: Arbitrage of forecasting experts (2019)
  4. Huber, Jakob; Müller, Sebastian; Fleischmann, Moritz; Stuckenschmidt, Heiner: A data-driven newsvendor problem: from data to decision (2019)
  5. Khan, Atikur R.; Hassani, Hossein: Dependence measures for model selection in singular spectrum analysis (2019)
  6. Li, Han; Tang, Qihe: Analyzing mortality bond indexes via hierarchical forecast reconciliation (2019)
  7. Peña, Daniel; Smucler, Ezequiel; Yohai, Victor J.: Forecasting multiple time series with one-sided dynamic principal components (2019)
  8. Rendon-Sanchez, Juan F.; de Menezes, Lilian M.: Structural combination of seasonal exponential smoothing forecasts applied to load forecasting (2019)
  9. Santos, James D.; Costa, José M. J.: An algorithm for prior elicitation in dynamic Bayesian models for proportions with the logit link function (2019)
  10. Shang, Han Lin: Dynamic principal component regression: application to age-specific mortality forecasting (2019)
  11. Shang, Han Lin; Yang, Yang; Kearney, Fearghal: Intraday forecasts of a volatility index: functional time series methods with dynamic updating (2019)
  12. Uddin, Gazi Salah; Gençay, Ramazan; Bekiros, Stelios; Sahamkhadam, Maziar: Enhancing the predictability of crude oil markets with hybrid wavelet approaches (2019)
  13. Wickramasuriya, Shanika L.; Athanasopoulos, George; Hyndman, Rob J.: Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization (2019)
  14. Yeo, Kyongmin; Melnyk, Igor: Deep learning algorithm for data-driven simulation of noisy dynamical system (2019)
  15. Al-Douri, Yamur K.; Hamodi, Hussan; Lundberg, Jan: Time series forecasting using a two-level multi-objective genetic algorithm: a case study of maintenance cost data for tunnel fans (2018)
  16. Atance, David; Navarro, Eliseo: A single factor model for constructing dynamic life tables (2018)
  17. Barrow, Devon; Kourentzes, Nikolaos: The impact of special days in call arrivals forecasting: a neural network approach to modelling special days (2018)
  18. Chu, Ba; Huynh, Kim; Jacho-Chávez, David; Kryvtsov, Oleksiy: On the evolution of the united kingdom price distributions (2018)
  19. Norwood, Ben; Killick, Rebecca: Long memory and changepoint models: a spectral classification procedure (2018)
  20. Petropoulos, Fotios; Hyndman, Rob J.; Bergmeir, Christoph: Exploring the sources of uncertainty: why does bagging for time series forecasting work? (2018)

1 2 3 next