rjags

R package rjags: Bayesian graphical models using MCMC. Interface to the JAGS MCMC library. The rjags package provides an interface from R to the JAGS library for Bayesian data analysis. JAGS uses Markov Chain Monte Carlo (MCMC) to generate a sequence of dependent samples from the posterior distribution of the parameters.


References in zbMATH (referenced in 43 articles )

Showing results 1 to 20 of 43.
Sorted by year (citations)

1 2 3 next

  1. David, Olivier; van Frank, Gaëlle; Goldringer, Isabelle; Rivière, Pierre; Turbet Delof, Michel: Bayesian inference of natural selection from spatiotemporal phenotypic data (2020)
  2. Osthus, Dave; Hyman, Jeffrey D.; Karra, Satish; Panda, Nishant; Srinivasan, Gowri: A probabilistic clustering approach for identifying primary subnetworks of discrete fracture networks with quantified uncertainty (2020)
  3. Amoros, Ruben; King, Ruth; Toyoda, Hidenori; Kumada, Takashi; Johnson, Philip J.; Bird, Thomas G.: A continuous-time hidden Markov model for cancer surveillance using serum biomarkers with application to hepatocellular carcinoma (2019)
  4. Arellano-Valle, Reinaldo B.; Contreras-Reyes, Javier E.; Quintero, Freddy O. López; Valdebenito, Abel: A skew-normal dynamic linear model and Bayesian forecasting (2019)
  5. Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer: Additive Bayesian Network Modelling with the R Package abn (2019) arXiv
  6. Nemmers, Thomas; Narayan, Anjana; Banerjee, Sudipto: Bayesian modeling and uncertainty quantification for descriptive social networks (2019)
  7. Osthus, Dave; Gattiker, James; Priedhorsky, Reid; Del Valle, Sara Y.: Dynamic Bayesian influenza forecasting in the United States with hierarchical discrepancy (with discussion) (2019)
  8. Pohl, Steffi; Ulitzsch, Esther; von Davier, Matthias: Using response times to model not-reached items due to time limits (2019)
  9. Draxler, Clemens: Bayesian conditional inference for Rasch models (2018)
  10. Edgar Merkle; Yves Rosseel: blavaan: Bayesian Structural Equation Models via Parameter Expansion (2018) not zbMATH
  11. Gómez-Rubio, Virgilio; Rue, Håvard: Markov chain Monte Carlo with the integrated nested Laplace approximation (2018)
  12. Lock, Eric F.; Kohli, Nidhi; Bose, Maitreyee: Detecting multiple random changepoints in Bayesian piecewise growth mixture models (2018)
  13. Chen Dong; Michel Wedel: BANOVA: An R Package for Hierarchical Bayesian ANOVA (2017) not zbMATH
  14. Lifeng Lin; Jing Zhang; James Hodges; Haitao Chu: Performing Arm-Based Network Meta-Analysis in R with the pcnetmeta Package (2017) not zbMATH
  15. Liu, Yang; Hannig, Jan: Generalized fiducial inference for logistic graded response models (2017)
  16. Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers: bridgesampling: An R Package for Estimating Normalizing Constants (2017) arXiv
  17. Arcuti, Simona; Pollice, Alessio; Ribecco, Nunziata; D’Onghia, Gianfranco: Bayesian spatiotemporal analysis of zero-inflated biological population density data by a delta-normal spatiotemporal additive model (2016)
  18. Cerchiello, Paola; Giudici, Paolo: A Bayesian h-index: how to measure research impact (2016)
  19. Fernandes, Laura L.; Murray, Susan; Taylor, Jeremy M. G.: Multivariate Markov models for the conditional probability of toxicity in phase II trials (2016)
  20. King, Ruth; McClintock, Brett T.; Kidney, Darren; Borchers, David: Capture-recapture abundance estimation using a semi-complete data likelihood approach (2016)

1 2 3 next