JAGS

JAGS is Just Another Gibbs Sampler. It is a program for analysis of Bayesian hierarchical models using Markov Chain Monte Carlo (MCMC) simulation not wholly unlike BUGS. JAGS was written with three aims in mind: (1) To have a cross-platform engine for the BUGS language. (2) To be extensible, allowing users to write their own functions, distributions and samplers. (3) To be a plaftorm for experimentation with ideas in Bayesian modelling. JAGS is licensed under the GNU General Public License. You may freely modify and redistribute it under certain conditions (see the file COPYING for details).


References in zbMATH (referenced in 74 articles )

Showing results 1 to 20 of 74.
Sorted by year (citations)

1 2 3 4 next

  1. Wang, Xiaofeng; Yue, Yu Ryan; Faraway, Julian J.: Bayesian regression modeling with INLA (2018)
  2. Bob Carpenter and Andrew Gelman and Matthew Hoffman and Daniel Lee and Ben Goodrich and Michael Betancourt and Marcus Brubaker and Jiqiang Guo and Peter Li and Allen Riddell: Stan: A Probabilistic Programming Language (2017)
  3. Boca, Simina M.; Pfeiffer, Ruth M.; Sampson, Joshua N.: Multivariate meta-analysis with an increasing number of parameters (2017)
  4. Coley, Rebecca Yates; Fisher, Aaron J.; Mamawala, Mufaddal; Carter, Herbert Ballentine; Pienta, Kenneth J.; Zeger, Scott L.: A Bayesian hierarchical model for prediction of latent health states from multiple data sources with application to active surveillance of prostate cancer (2017)
  5. Corani, Giorgio; Benavoli, Alessio; Demšar, Janez; Mangili, Francesca; Zaffalon, Marco: Statistical comparison of classifiers through Bayesian hierarchical modelling (2017)
  6. Draper, David; Terenin, Alexander: Comment: A brief survey of the current state of play for Bayesian computation in data science at big-data scale (2017)
  7. Gronau, Quentin F.; Sarafoglou, Alexandra; Matzke, Dora; Ly, Alexander; Boehm, Udo; Marsman, Maarten; Leslie, David S.; Forster, Jonathan J.; Wagenmakers, Eric-Jan; Steingroever, Helen: A tutorial on bridge sampling (2017)
  8. Hilbe, Joseph M.; de Souza, Rafael S.; Ishida, Emille E. O.: Bayesian models for astrophysical data. Using R, JAGS, Python, and Stan (2017)
  9. Jeon, Minjeong; Rijmen, Frank; Rabe-Hesketh, Sophia: A variational maximization-maximization algorithm for generalized linear mixed models with crossed random effects (2017)
  10. Lahoz-Monfort, José J.; Harris, Michael P.; Wanless, Sarah; Freeman, Stephen N.; Morgan, Byron J.T.: Bringing it all together: multi-species integrated population modelling of a breeding community (2017)
  11. Lanzarone, E.; Pasquali, S.; Gilioli, G.; Marchesini, E.: A Bayesian estimation approach for the mortality in a stage-structured demographic model (2017)
  12. Ligtvoet, Rudy: Exact one-sided Bayes factors for 2 by 2 contingency tables (2017)
  13. Liu, Yang; Hannig, Jan: Generalized fiducial inference for logistic graded response models (2017)
  14. Nunez, Michael D.; Vandekerckhove, Joachim; Srinivasan, Ramesh: How attention influences perceptual decision making: single-trial EEG correlates of drift-diffusion model parameters (2017)
  15. Piulachs, Xavier; Alemany, Ramon; Guillén, Montserrat; Rizopoulos, Dimitris: Joint models for longitudinal counts and left-truncated time-to event data with applications to health insurance (2017)
  16. Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers: bridgesampling: An R Package for Estimating Normalizing Constants (2017) arXiv
  17. Tang, Niansheng; Chow, Sy-Miin; Ibrahim, Joseph G.; Zhu, Hongtu: Bayesian sensitivity analysis of a nonlinear dynamic factor analysis model with nonparametric prior and possible nonignorable missingness (2017)
  18. Arcuti, Simona; Pollice, Alessio; Ribecco, Nunziata; D’Onghia, Gianfranco: Bayesian spatiotemporal analysis of zero-inflated biological population density data by a delta-normal spatiotemporal additive model (2016)
  19. Dalla Valle, Luciana; De Giuli, Maria Elena; Tarantola, Claudia; Manelli, Claudio: Default probability estimation via pair copula constructions (2016)
  20. Fullerton, Andrew S.; Xu, Jun: Ordered regression models. Parallel, partial, and non-parallel alternatives (2016)

1 2 3 4 next