Scikit

Scikit-learn: machine learning in python. Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from url{http://scikit-learn.sourceforge.net}.


References in zbMATH (referenced in 59 articles , 1 standard article )

Showing results 1 to 20 of 59.
Sorted by year (citations)

1 2 3 next

  1. Brazdil, Pavel (ed.); Giraud-Carrier, Christophe (ed.): Metalearning and algorithm selection: progress, state of the art and introduction to the 2018 special issue (2018)
  2. Erickson, Collin B.; Ankenman, Bruce E.; Sanchez, Susan M.: Comparison of Gaussian process modeling software (2018)
  3. Gerbeau, Jean-Frédéric; Lombardi, Damiano; Tixier, Eliott: A moment-matching method to study the variability of phenomena described by partial differential equations (2018)
  4. Lorena, Ana C.; Maciel, Aron I.; de Miranda, Péricles B. C.; Costa, Ivan G.; Prud^encio, Ricardo B. C.: Data complexity meta-features for regression problems (2018)
  5. Olier, Ivan; Sadawi, Noureddin; Bickerton, G. Richard; Vanschoren, Joaquin; Grosan, Crina; Soldatova, Larisa; King, Ross D.: Meta-QSAR: a large-scale application of meta-learning to drug design and discovery (2018)
  6. Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin, George D. C. Cavalcanti: DESlib: A Dynamic ensemble selection library in Python (2018) arXiv
  7. Sen, Deborshee; Thiery, Alexandre H.; Jasra, Ajay: On coupling particle filter trajectories (2018)
  8. Andersen, Michael Riis; Vehtari, Aki; Winther, Ole; Hansen, Lars Kai: Bayesian inference for spatio-temporal spike-and-slab priors (2017)
  9. Andrew C. Heusser, Kirsten Ziman, Lucy L. W. Owen, Jeremy R. Manning: HyperTools: A Python toolbox for visualizing and manipulating high-dimensional data (2017) arXiv
  10. Bacciu, Davide; Carta, Antonio; Gnesi, Stefania; Semini, Laura: An experience in using machine learning for short-term predictions in smart transportation systems (2017)
  11. Benjamin Guedj, Bhargav Srinivasa Desikan: Pycobra: A Python Toolbox for Ensemble Learning and Visualisation (2017) arXiv
  12. Chiang, Alvin; David, Esther; Lee, Yuh-Jye; Leshem, Guy; Yeh, Yi-Ren: A study on anomaly detection ensembles (2017)
  13. Di Iura, Andrea; Meloni, Davide: Probability densities of the effective neutrino masses $m_\beta$ and $m_\beta\beta$ (2017)
  14. Dumančić, Sebastijan; Blockeel, Hendrik: An expressive dissimilarity measure for relational clustering using neighbourhood trees (2017)
  15. Huang, Kuan-Hao; Lin, Hsuan-Tien: Cost-sensitive label embedding for multi-label classification (2017)
  16. Igual, Laura; Seguí, Santi: Introduction to data science. A Python approach to concepts, techniques and applications. With contributions from Jordi Vitrià, Eloi Puertas Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantíand Lluís Garrido (2017)
  17. Komiske, Patrick T.; Metodiev, Eric M.; Schwartz, Matthew D.: Deep learning in color: towards automated quark/gluon jet discrimination (2017)
  18. Kotthoff, Lars; Thornton, Chris; Hoos, Holger H.; Hutter, Frank; Leyton-Brown, Kevin: Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA (2017)
  19. Kruber, Markus; Lübbecke, Marco E.; Parmentier, Axel: Learning when to use a decomposition (2017)
  20. Lema^ıtre, Guillaume; Nogueira, Fernando; Aridas, Christos K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning (2017)

1 2 3 next