timereg

R package timereg: Flexible regression models for survival data. Programs for Martinussen and Scheike (2006), ‘Dynamic Regression Models for Survival Data’, Springer Verlag. Plus more recent developments. Additive survival model, semiparametric proportional odds model, fast cumulative residuals, excess risk models and more. Flexible competing risks regression including GOF-tests. Two-stage frailty modelling. PLS for the additive risk model. Lasso in ahaz package.


References in zbMATH (referenced in 67 articles , 1 standard article )

Showing results 1 to 20 of 67.
Sorted by year (citations)

1 2 3 4 next

  1. Bischofberger, Stephan M.; Hiabu, Munir; Mammen, Enno; Nielsen, Jens Perch: A comparison of in-sample forecasting methods (2019)
  2. Blanche, Paul; Gerds, Thomas A.; Ekstrøm, Claus T.: The Wally plot approach to assess the calibration of clinical prediction models (2019)
  3. Eric S Kawaguchi, Jenny I Shen, Gang Li, Marc A Suchard: A Fast and Scalable Implementation Method for Competing Risks Data with the R Package fastcmprsk (2019) arXiv
  4. Liu, Lei; Shih, Ya-Chen Tina; Strawderman, Robert L.; Zhang, Daowen; Johnson, Bankole A.; Chai, Haitao: Statistical analysis of zero-inflated nonnegative continuous data: a review (2019)
  5. Lopez, Olivier: A censored copula model for micro-level claim reserving (2019)
  6. Lv, Xiaofeng; Zhang, Gupeng; Xu, Xinkuo; Li, Qinghai: Weighted quantile regression for censored data with application to export duration data (2019)
  7. Pavlič, Klemen; Martinussen, Torben; Andersen, Per Kragh: Goodness of fit tests for estimating equations based on pseudo-observations (2019)
  8. Chen, Chyong-Mei; Shen, Pao-Sheng: Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data (2018)
  9. Liu, Wanrong; Fang, Jianglin; Lu, Xuewen: Additive-multiplicative hazards model with current status data (2018)
  10. Maxild Mortensen, Lotte; Hansen, Camilla Plambeck; Overvad, Kim; Lundbye-Christensen, Søren; Parner, Erik T.: The pseudo-observation analysis of time-to-event data. Example from the Danish Diet, Cancer and Health Cohort illustrating assumptions, model validation and interpretation of results (2018)
  11. Milhaud, Xavier; Dutang, Christophe: Lapse tables for lapse risk management in insurance: a competing risk approach (2018)
  12. Friedrich, Sarah; Konietschke, Frank; Pauly, Markus: A wild bootstrap approach for nonparametric repeated measurements (2017)
  13. Gallardo, Diego I.; Gómez, Yolanda M.; Arnold, Barry C.; Gómez, Héctor W.: The Pareto IV power series cure rate model with applications (2017)
  14. Garès, Valérie; Andrieu, Sandrine; Dupuy, Jean-François; Savy, Nicolas: On the Fleming-Harrington test for late effects in prevention randomized controlled trials (2017)
  15. Han, Dongxiao; Sun, Liuquan; Sun, Yanqing; Qi, Li: Mark-specific additive hazards regression with continuous marks (2017)
  16. Lv, Xiaofeng; Zhang, Gupeng; Ren, Guangyu: Gini index estimation for lifetime data (2017)
  17. Mansourvar, Zahra; Martinussen, Torben: Estimation of average causal effect using the restricted mean residual lifetime as effect measure (2017)
  18. Moradian, Hoora; Larocque, Denis; Bellavance, François: (L_1) splitting rules in survival forests (2017)
  19. Pal, Suvra; Balakrishnan, N.: Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data (2017)
  20. Suzuki, Adriano K.; Barriga, Gladys D. C.; Louzada, Francisco; Cancho, Vicente G.: A general long-term aging model with different underlying activation mechanisms: modeling, Bayesian estimation, and case influence diagnostics (2017)

1 2 3 4 next