Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

depmix

depmix: Dependent Mixture Models. Fit (multigroup) mixtures of latent Markov models on mixed categorical and continuous (timeseries) data

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • EM algorithm
  • regime switching
  • forecasting
  • dynamic
  • Gaussian mixture models
  • data-driven reversible jump
  • identifiability
  • dyadic
  • longitudinal data
  • differential equation
  • psychology
  • mixture model
  • Markov chain Monte Carlo (MCMC) procedure
  • missing data
  • diabetes incidence
  • Kim filter
  • mixture models
  • multinomial hidden Markov models
  • regime-switching
  • dynamic factor analysis
  • conditional independence
  • strange situation
  • hidden Markov
  • Markov chains
  • parameters estimates
  • nonparametric mixture models
  • contingency table
  • dependent mixture model
  • continuous time observations
  • (k)-means

  • URL: cran.r-project.org/web...
  • Code
  • InternetArchive
  • Manual: cran.r-project.org/web...
  • Authors: Ingmar Visser
  • Dependencies: R

  • Add information on this software.


  • Related software:
  • msm
  • R
  • depmixS4
  • PROC LTA
  • GAUSS
  • HiddenMarkov
  • RHmm
  • Mplus
  • SAS
  • OpenMx
  • Show more...
  • Ox
  • Fahrmeir
  • hmmm
  • hmm.discnp
  • dynr
  • HMM
  • HMMCont
  • LMest
  • CRAN
  • Show less...

References in zbMATH (referenced in 7 articles )

Showing results 1 to 7 of 7.
y Sorted by year (citations)

  1. Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana; Prince, Emily B.; You, Dongjun; Hunter, Michael D.; Rehg, James M.; Rozga, Agata; Messinger, Daniel S.: Representing sudden shifts in intensive dyadic interaction data using differential equation models with regime switching (2018)
  2. Zuanetti, Daiane Aparecida; Milan, Luis Aparecido: A generalized mixture model applied to diabetes incidence data (2017)
  3. Kazor, Karen; Hering, Amanda S.: Assessing the performance of model-based clustering methods in multivariate time series with application to identifying regional wind regimes (2015)
  4. Visser, Ingmar; Speekenbrink, Maarten: Comments on: “Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates” (2014)
  5. Chow, Sy-Miin; Zhang, Guangjian: Nonlinear regime-switching state-space (RSSS) models (2013)
  6. Colombi, Roberto; Giordano, Sabrina: Testing lumpability for marginal discrete hidden Markov models (2011)
  7. Visser, Ingmar: Seven things to remember about hidden Markov models: A tutorial on Markovian models for time series (2011)

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 60 Probability theory and...
      • 62 Statistics
      • 65 Numerical analysis
      • 92 Applications of...

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy