BEM++

BEM++ is a modern open-source C++/Python boundary element library. Its development is a joint project between University College London (UCL), the University of Reading and the University of Durham. The main coding team is located at UCL and consists of Simon Arridge, Timo Betcke, Richard James, Nicolas Salles, Martin Schweiger and Wojciech Śmigaj.


References in zbMATH (referenced in 34 articles )

Showing results 1 to 20 of 34.
Sorted by year (citations)

1 2 next

  1. Bespalov, Alex; Betcke, Timo; Haberl, Alexander; Praetorius, Dirk: Adaptive BEM with optimal convergence rates for the Helmholtz equation (2019)
  2. Betcke, Timo; Burman, Erik; Scroggs, Matthew W.: Boundary element methods with weakly imposed boundary conditions (2019)
  3. Führer, Thomas; Haberl, Alexander; Praetorius, Dirk; Schimanko, Stefan: Adaptive BEM with inexact PCG solver yields almost optimal computational costs (2019)
  4. Galkowski, Jeffrey; Müller, Eike H.; Spence, Euan A.: Wavenumber-explicit analysis for the Helmholtz (h)-BEM: error estimates and iteration counts for the Dirichlet problem (2019)
  5. Hagemann, Felix; Arens, Tilo; Betcke, Timo; Hettlich, Frank: Solving inverse electromagnetic scattering problems via domain derivatives (2019)
  6. Hrkac, Gino; Pfeiler, Carl-Martin; Praetorius, Dirk; Ruggeri, Michele; Segatti, Antonio; Stiftner, Bernhard: Convergent tangent plane integrators for the simulation of chiral magnetic skyrmion dynamics (2019)
  7. Huybrechs, Daan; Opsomer, Peter: High-frequency asymptotic compression of dense BEM matrices for general geometries without ray tracing (2019)
  8. Pérez-Arancibia, Carlos; Faria, Luiz M.; Turc, Catalin: Harmonic density interpolation methods for high-order evaluation of Laplace layer potentials in 2D and 3D (2019)
  9. Alouges, François; Aussal, Matthieu: FEM and BEM simulations with the Gypsilab framework (2018)
  10. Banjai, Lehel; Rieder, Alexander: Convolution quadrature for the wave equation with a nonlinear impedance boundary condition (2018)
  11. Elias Jarlebring, Max Bennedich, Giampaolo Mele, Emil Ringh, Parikshit Upadhyaya: NEP-PACK: A Julia package for nonlinear eigenproblems - v0.2 (2018) arXiv
  12. Griesmaier, Roland; Mishra, Rohit Kumar; Schmiedecke, Christian: Inverse source problems for Maxwell’s equations and the windowed Fourier transform (2018)
  13. Griesmaier, Roland; Sylvester, John: Uncertainty principles for inverse source problems for electromagnetic and elastic waves (2018)
  14. Kressner, Daniel; Lu, Ding; Vandereycken, Bart: Subspace acceleration for the Crawford number and related eigenvalue optimization problems (2018)
  15. Praetorius, Dirk; Ruggeri, Michele; Stiftner, Bernhard: Convergence of an implicit-explicit midpoint scheme for computational micromagnetics (2018)
  16. Wala, Matt; Klöckner, Andreas: Conformal mapping via a density correspondence for the double-layer potential (2018)
  17. Xing, Xin; Chow, Edmond: Preserving positive definiteness in hierarchically semiseparable matrix approximations (2018)
  18. Betcke, Timo; van’t Wout, Elwin; Gélat, Pierre: Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded domains (2017)
  19. Betcke, T.; Salles, N.; Śmigaj, W.: Overresolving in the Laplace domain for convolution quadrature methods (2017)
  20. Feischl, Michael; Führer, Thomas; Praetorius, Dirk; Stephan, Ernst P.: Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations (2017)

1 2 next