BEM++

BEM++ is a modern open-source C++/Python boundary element library. Its development is a joint project between University College London (UCL), the University of Reading and the University of Durham. The main coding team is located at UCL and consists of Simon Arridge, Timo Betcke, Richard James, Nicolas Salles, Martin Schweiger and Wojciech Śmigaj.


References in zbMATH (referenced in 43 articles )

Showing results 1 to 20 of 43.
Sorted by year (citations)

1 2 3 next

  1. Arens, Tilo; Ji, Xia; Liu, Xiaodong: Inverse electromagnetic obstacle scattering problems with multi-frequency sparse backscattering far field data (2020)
  2. Betcke, Timo; Scroggs, Matthew W.; Śmigaj, Wojciech: Product algebras for Galerkin discretisations of boundary integral operators and their applications (2020)
  3. Escapil-Inchauspé, Paul; Jerez-Hanckes, Carlos: Helmholtz scattering by random domains: first-order sparse boundary element approximation (2020)
  4. Fierro, Ignacia; Jerez-Hanckes, Carlos: Fast Calderón preconditioning for Helmholtz boundary integral equations (2020)
  5. Hagemann, Felix; Hettlich, Frank: Application of the second domain derivative in inverse electromagnetic scattering (2020)
  6. Mascotto, Lorenzo; Melenk, Jens M.; Perugia, Ilaria; Rieder, Alexander: FEM-BEM mortar coupling for the Helmholtz problem in three dimensions (2020)
  7. Stevenson, Rob; van Venetië, Raymond: Uniform preconditioners for problems of positive order (2020)
  8. Bespalov, Alex; Betcke, Timo; Haberl, Alexander; Praetorius, Dirk: Adaptive BEM with optimal convergence rates for the Helmholtz equation (2019)
  9. Betcke, Timo; Burman, Erik; Scroggs, Matthew W.: Boundary element methods with weakly imposed boundary conditions (2019)
  10. Führer, Thomas; Haberl, Alexander; Praetorius, Dirk; Schimanko, Stefan: Adaptive BEM with inexact PCG solver yields almost optimal computational costs (2019)
  11. Galkowski, Jeffrey; Müller, Eike H.; Spence, Euan A.: Wavenumber-explicit analysis for the Helmholtz (h)-BEM: error estimates and iteration counts for the Dirichlet problem (2019)
  12. Hagemann, Felix; Arens, Tilo; Betcke, Timo; Hettlich, Frank: Solving inverse electromagnetic scattering problems via domain derivatives (2019)
  13. Hrkac, Gino; Pfeiler, Carl-Martin; Praetorius, Dirk; Ruggeri, Michele; Segatti, Antonio; Stiftner, Bernhard: Convergent tangent plane integrators for the simulation of chiral magnetic skyrmion dynamics (2019)
  14. Huybrechs, Daan; Opsomer, Peter: High-frequency asymptotic compression of dense BEM matrices for general geometries without ray tracing (2019)
  15. Pérez-Arancibia, Carlos; Faria, Luiz M.; Turc, Catalin: Harmonic density interpolation methods for high-order evaluation of Laplace layer potentials in 2D and 3D (2019)
  16. Alouges, François; Aussal, Matthieu: FEM and BEM simulations with the Gypsilab framework (2018)
  17. Banjai, Lehel; Rieder, Alexander: Convolution quadrature for the wave equation with a nonlinear impedance boundary condition (2018)
  18. Elias Jarlebring, Max Bennedich, Giampaolo Mele, Emil Ringh, Parikshit Upadhyaya: NEP-PACK: A Julia package for nonlinear eigenproblems - v0.2 (2018) arXiv
  19. Griesmaier, Roland; Mishra, Rohit Kumar; Schmiedecke, Christian: Inverse source problems for Maxwell’s equations and the windowed Fourier transform (2018)
  20. Griesmaier, Roland; Sylvester, John: Uncertainty principles for inverse source problems for electromagnetic and elastic waves (2018)

1 2 3 next