Total FETI

Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE. A new variant of the finite element tearing and interconnecting (FETI) method for numerical solution of elliptic partial differential equations (PDE) is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient than the original FETI.


References in zbMATH (referenced in 37 articles )

Showing results 1 to 20 of 37.
Sorted by year (citations)

1 2 next

  1. Čermák, Martin; Hapla, Václav; Kružík, Jakub; Markopoulos, Alexandros; Vašatová, Alena: Comparison of different FETI preconditioners for elastoplasticity (2017)
  2. Krejčí, Tomáš; Kruis, Jaroslav; Šejnoha, Michal; Koudelka, Tomáš: Numerical analysis of coupled heat and moisture transport in masonry (2017)
  3. Markopoulos, A.; Říha, L.; Brzobohatý, T.; Jirutková, P.; Kučera, R.; Meca, O.; Kozubek, T.: Treatment of singular matrices in the hybrid total FETI method (2017)
  4. Hapla, Vaclav; Horak, David; Pospisil, Lukas; Cermak, Martin; Vasatova, Alena; Sojka, Radim: Solving contact mechanics problems with PERMON (2016)
  5. Lindner, Bernhard; Duenser, Christian; Beer, Gernot: Coupling of BEM subdomains -- BETI applied to collocation BEM with mixed basis functions (2016)
  6. Říha, Lubomír; Brzobohatý, Tomáš; Markopoulos, Alexandros; Kozubek, Tomáš; Meca, Ondřej; Schenk, Olaf; Vanroose, Wim: Efficient implementation of total FETI solver for graphic processing units using Schur complement (2016)
  7. Cermak, M.; Haslinger, J.; Kozubek, T.; Sysala, S.: Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. II: Numerical realization, limit analysis (2015)
  8. Dostál, Z.; Kozubek, T.; Vlach, O.; Brzobohatý, T.: Reorthogonalization-based stiffness preconditioning in FETI algorithms with applications to variational inequalities. (2015)
  9. Hofreither, Clemens; Langer, Ulrich; Pechstein, Clemens: BEM-based finite element tearing and interconnecting methods (2015)
  10. Kučera, Radek; Motyčková, Kristina; Markopoulos, Alexandros: The R-linear convergence rate of an algorithm arising from the semi-smooth Newton method applied to 2D contact problems with friction (2015)
  11. Augustin, Christoph M.; Holzapfel, Gerhard A.; Steinbach, Olaf: Classical and all-floating FETI methods for the simulation of arterial tissues (2014)
  12. Dostál, Zdeněk; Horák, David; Vodstrčil, Petr: On R-linear convergence of semi-monotonic inexact augmented Lagrangians for saddle point problems (2014)
  13. Baumgartner, Stefan; Heitzinger, Clemens: A one-level FETI method for the drift-diffusion-Poisson system with discontinuities at an interface (2013)
  14. Dostál, Zdeněk; Kozubek, Tomáš; Brzobohatý, Tomáš; Markopoulos, Alexandros; Vlach, Oldřich: Scalable TFETI with optional preconditioning by conjugate projector for transient frictionless contact problems of elasticity (2012)
  15. Dostál, Z.; Kozubek, T.; Markopoulos, A.; Brzobohatý, T.; Vondrák, V.; Horyl, P.: A theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction (2012)
  16. Haslinger, J.; Kučera, R.; Vlach, O.; Baniotopoulos, C. C.: Approximation and numerical realization of 3D quasistatic contact problems with Coulomb friction (2012)
  17. Kleiss, Stefan K.; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra: IETI -- isogeometric tearing and interconnecting (2012)
  18. Kučera, R.; Kozubek, T.; Markopoulos, A.; Machalová, J.: On the Moore-Penrose inverse in solving saddle-point systems with singular diagonal blocks. (2012)
  19. Aubry, R.; Mut, F.; Dey, S.; Löhner, R.: Deflated preconditioned conjugate gradient solvers for linear elasticity (2011)
  20. Brzobohatý, T.; Dostál, Z.; Kozubek, T.; Kovář, P.; Markopoulos, A.: Cholesky decomposition with fixing nodes to stable computation of a generalized inverse of the stiffness matrix of a floating structure (2011)

1 2 next