SLCPM12

SLCPM12, a program for solving regular Sturm-Liouville problems. The code SLCPM12 first converts the original Sturm-Liouville equation into an equation of the Schrödinger form and then it solves the latter by means of a suited highly accurate method. The conversion is done by using Liouville’s transformation and the numerical method for solving the Schrödinger equation is CPM{12,10} developed by the authors [J. Comput. Appl. Math. 88, No. 2, 289-314 (1998; Zbl 0909.65045)]. The new code is by far faster and more accurate than other existing codes, e.g. SLEDGE, SLEIGN and SL02F. (Source: http://cpc.cs.qub.ac.uk/summaries/)


References in zbMATH (referenced in 21 articles , 1 standard article )

Showing results 1 to 20 of 21.
Sorted by year (citations)

1 2 next

  1. Amodio, Pierluigi; Settanni, Giuseppina: Reprint of “Variable-step finite difference schemes for the solution of Sturm-Liouville problems” (2015)
  2. Amodio, Pierluigi; Settanni, Giuseppina: Variable-step finite difference schemes for the solution of Sturm-Liouville problems (2015)
  3. Paternoster, Beatrice: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday (2012)
  4. Ledoux, Veerle; Van Daele, Marnix: On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation (2011)
  5. Ixaru, L.Gr.: New numerical method for the eigenvalue problem of the 2D Schrödinger equation (2010)
  6. Ledoux, Veerle; Van Daele, Marnix: Solution of Sturm-Liouville problems using modified Neumann schemes (2010)
  7. Ledoux, V.; Van Daele, M.: Solving Sturm-Liouville problems by piecewise perturbation methods, revisited (2010)
  8. Famelis, I.Th.: Explicit eighth order Numerov-type methods with reduced number of stages for oscillatory IVPs (2008)
  9. Ishikawa, Hideaki: Numerical methods for the eigenvalue determination of second-order ordinary differential equations (2007)
  10. Ixaru, L.Gr.: Efficient computation of the Airy propagators (2007)
  11. Vanden Berghe, G.; Van Daele, M.: Exponentially-fitted Numerov methods (2007)
  12. Degani, Ilan; Schiff, Jeremy: RCMS: Right correction Magnus series approach for oscillatory ODEs (2006)
  13. Ledoux, Veerle; Van Daele, Marnix; Vanden Berghe, Guido: Piecewise constant perturbation methods for the multichannel Schrödinger equation (2006)
  14. Ledoux, V.; Ixaru, L.Gr.; Rizea, M.; Van Daele, M.; Vanden Berghe, G.: Solution of the Schrödinger equation over an infinite integration interval by perturbation methods, revisited (2006)
  15. Ledoux, V.; Rizea, M.; Ixaru, L.; Vanden Berghe, G.; Van Daele, M.: Solution of the Schrödinger equation by a high order perturbation method based on a linear reference potential (2006)
  16. Ledoux, Veerle; Van Daele, Marnix; Vanden Berghe, Guido: MATSLISE: a MATLAB package for the numerical solution of Sturm-Liouville and Schrödinger equations. (2005)
  17. Ledoux, V.; Van Daele, M.; Vanden Berghe, G.: CP methods and the evaluation of negative energy Coulomb Whittaker functions (2005)
  18. Ledoux, V.; Van Daele, M.; Vanden Berghe, Guido: CP methods of higher order for Sturm-Liouville and Schrödinger equations (2004)
  19. Tsitouras, Ch.: Explicit Numerov type methods with reduced number of stages. (2003)
  20. Ghelardoni, P.; Gheri, G.; Marletta, M.: Spectral corrections for Sturm-Liouville problems (2001)

1 2 next