Protein structure optimization by side-chain positioning via beta-complex. A molecular structure determines a molecular function(s) and a correct understanding of molecular structure is important for biotechnology. The computational prediction of molecular structure is a frequent requirement for important biomolecular applications such as a homology modeling, a docking simulation, a protein design, etc. where the optimization of molecular structure is fundamental. One of the core problems in the optimization of protein structure is the optimization of side-chains called the side-chain positioning problem. The side-chain positioning problem, assuming the rigidity of backbone and a rotamer library, attempts to optimally assign a rotamer to each residue so that the potential energy of protein is minimized in its entirety. The optimal solution approach using (mixed) integer linear programming, with the dead-end elimination technique, suffers even for moderate-sized proteins because the side-chain positioning problem is NP-hard. On the other hand, popular heuristic approaches focusing on speed produce solutions of low quality. This paper presents an efficient algorithm, called the BetaSCP, for the side-chain positioning problem based on the beta-complex which is a derivative geometric construct of the Voronoi diagram. Placing a higher priority on the solution quality, the BetaSCP algorithm produces a solution very close to the optima within a reasonable computation time. The effectiveness and efficiency of the BetaSCP are experimentally shown via a benchmark test against well-known algorithms using twenty test models selected from the Protein Data Bank.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Ryu, Joonghyun; Kim, Deok-Soo: Protein structure optimization by side-chain positioning via beta-complex (2013)