Aria

Aria 1.5: User Manual; Sandia National Laboratories. Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes the incompressible Navier-Stokes equations, energy transport equation, species transport equations, nonlinear elastic solid mechanics, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking. Coupled physics problems are solved in several ways including fully-coupled Newton’s method with analytic or numerical sensitivities, fully-coupled Newton-Krylov methods, fully-coupled Picard’s method, and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria’s more advanced capabilities. Aria is based on the Sierra Framework.

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Clausen, Jonathan R.: Using the suspension balance model in a finite-element flow solver (2013)