CFS++
Investigation of prescribed movement in fluid–structure interaction simulation for the human phonation process. In a partitioned approach for computational fluid–structure interaction (FSI) the coupling between fluid and structure causes substantial computational resources. Therefore, a convenient alternative is to reduce the problem to a pure flow simulation with preset movement and applying appropriate boundary conditions. This work investigates the impact of replacing the fully-coupled interface condition with a one-way coupling. To continue to capture structural movement and its effect onto the flow field, prescribed wall movements from separate simulations and/or measurements are used. As an appropriate test case, we apply the different coupling strategies to the human phonation process, which is a highly complex interaction of airflow through the larynx and structural vibration of the vocal folds (VF). We obtain vocal fold vibrations from a fully-coupled simulation and use them as input data for the simplified simulation, i.e. just solving the fluid flow. All computations are performed with our research code CFS++, which is based on the finite element (FE) method. The presented results show that a pure fluid simulation with prescribed structural movement can substitute the fully-coupled approach. However, caution must be used to ensure accurate boundary conditions on the interface, and we found that only a pressure driven flow correctly responds to the physical effects when using specified motion.
References in zbMATH (referenced in 2 articles )
Showing results 1 to 2 of 2.
Sorted by year (- Valášek, Jan; Sváček, Petr; Horáček, Jaromír: Numerical approximation of interaction of fluid flow and elastic structure vibrations (2016)
- Zörner, S.; Kaltenbacher, M.; Döllinger, M.: Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process (2013)