F1
F1: a code to compute Appell’s F 1 hypergeometric function. We present the FORTRAN code to compute the hypergeometric function F 1 (α,β 1 ,β 2 ,γ,x,y) of Appell. The program can compute the F 1 function for real values of the variables x,y, and complex values of the parameters α,β 1 ,β 2 ,γ. The code uses different strategies to calculate the function according to the ideas outlined by F.D. Colavecchia et al. [Comput. Phys. Commun. 138, No. 1, 29–43 (2001; Zbl 0984.65017)].
Keywords for this software
References in zbMATH (referenced in 5 articles )
Showing results 1 to 5 of 5.
Sorted by year (- Huang, Zhi-Wei; Liu, Jueping: NumExp: numerical epsilon expansion of hypergeometric functions (2013)
- Gil, Amparo; Segura, Javier; Temme, Nico M.: Basic methods for computing special functions (2011)
- Pogány, Tibor K.; Nadarajah, Saralees: Explicit expressions for the variogram of first-order intrinsic autoregressions (2009)
- Colavecchia, F. D.; Gasaneo, G.: F1: a code to compute Appell’s (F_1) hypergeometric function (2004)
- Colavecchia, F. D.; Gasaneo, G.; Miraglia, J. E.: Numerical evaluation of Appell’s (F_1) hypergeometric function (2001)