A geometric approach to density estimation with additive noise.We introduce and study a method for density estimation under an additive noise model. Our method does not attempt to maximize a likelihood, but rather is purely geometric: heuristically, we L 2 -project the observed empirical distribution onto the space of candidate densities that are reachable under the additive noise model. Our estimator reduces to a quadratic program, and so can be computed efficiently. In simulation studies, it roughly matches the accuracy of fully general maximum likelihood estimators at a fraction of the computational cost. We give a theoretical analysis of the estimator and show that it is consistent, attains a quasi-parametric convergence rate under moment conditions, and is robust to model mis-specification. We provide an R implementation of the proposed estimator in the package nlpden.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

References in zbMATH (referenced in 1 article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Wager, Stefan: A geometric approach to density estimation with additive noise (2014)