oomph-lib

oomph-lib: An object-oriented multi-physics finite-element library. This paper discusses certain aspects of the design and implementation of oomph-lib, an object-oriented multi-physics finite-element library, available as open-source software at http://www.oomph-lib.org. The main aim of the library is to provide an environment that facilitates the robust, adaptive solution of multi-physics problems by monolithic discretisations, while maximising the potential for code re-use. This is achieved by the extensive use of object-oriented programming techniques, including multiple inheritance, function overloading and template (generic) programming, which allow existing objects to be (re-)used in many different ways without having to change their original implementation.


References in zbMATH (referenced in 25 articles , 1 standard article )

Showing results 1 to 20 of 25.
Sorted by year (citations)

1 2 next

  1. Aslak W. Bergersen, Andreas Slyngstad, Sebastian Gjertsen, Alban Souche, Kristian Valen-Sendstad: turtleFSI: A Robust and Monolithic FEniCS-based Fluid-Structure Interaction Solver (2020) not zbMATH
  2. Nielsen, Anne R.; Heil, Matthias; Andersen, Morten; Brøns, Morten: Bifurcation theory for vortices with application to boundary layer eruption (2019)
  3. Shepherd, David; Miles, James; Heil, Matthias; Mihajlović, Milan: An adaptive step implicit midpoint rule for the time integration of Newton’s linearisations of non-linear problems with applications in micromagnetics (2019)
  4. Bergemann, Nico; Juel, Anne; Heil, Matthias: Viscous drops on a layer of the same fluid: from sinking, wedging and spreading to their long-time evolution (2018)
  5. Walker, Shawn W.: FELICITY: a Matlab/C++ toolbox for developing finite element methods and simulation modeling (2018)
  6. Hazel, Andrew L.; Mullin, Tom: On the buckling of elastic rings by external confinement (2017)
  7. Heil, Matthias; Rosso, Jordan; Hazel, Andrew L.; Brøns, Morten: Topological fluid mechanics of the formation of the Kármán-vortex street (2017)
  8. Johnson, C. G.; Jain, U.; Hazel, A. L.; Pihler-Puzović, D.; Mullin, T.: On the buckling of an elastic holey column (2017)
  9. Heil, Matthias; Bertram, Christopher D.: A poroelastic fluid-structure interaction model of syringomyelia (2016)
  10. Lee, J.; Cookson, A.; Roy, I.; Kerfoot, E.; Asner, L.; Vigueras, G.; Sochi, T.; Deparis, S.; Michler, C.; Smith, N. P.; Nordsletten, D. A.: Multiphysics computational modeling in (\mathcalC\mathbfHeart) (2016)
  11. Hewitt, Richard E.; Harrison, Iain: Exponential sensitivity to symmetry imperfections in an exact Navier-Stokes solution (2012)
  12. Liao, Qifeng; Silvester, David: A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations (2012)
  13. Muddle, Richard L.; Mihajlović, Milan; Heil, Matthias: An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates (2012)
  14. Hewitt, R. E.; Hazel, A. L.; Clarke, R. J.; Denier, J. P.: Unsteady flow in a rotating torus after a sudden change in rotation rate (2011)
  15. Boyle, Jonathan; Mihajlovi, Milan; Scott, Jennifer: HSL_MI20: an efficient AMG preconditioner for finite element problems in 3D (2010)
  16. Heil, Matthias; Boyle, Jonathan: Self-excited oscillations in three-dimensional collapsible tubes: simulating their onset and large-amplitude oscillations (2010)
  17. Stewart, Peter S.; Heil, Matthias; Waters, Sarah L.; Jensen, Oliver E.: Sloshing and slamming oscillations in a collapsible channel flow (2010)
  18. Whittaker, Robert J.; Heil, Matthias; Jensen, Oliver E.; Waters, Sarah L.: A rational derivation of a tube law from shell theory (2010)
  19. Muddle, Richard L.; Boyle, Jonathan W.; Mihajlović, Milan D.; Heil, Matthias: The development of an object-oriented parallel block preconditioning framework (2009)
  20. De Lózar, Alberto; Juel, Anne; Hazel, Andrew L.: The steady propagation of an air finger into a rectangular tube (2008)

1 2 next


Further publications can be found at: http://oomph-lib.maths.man.ac.uk/doc/publications/html/index.html