Symmetric Galerkin Boundary Element Method. Galerkin Boundary Element Method presents an introduction as well as recent developments of this accurate, powerful, and versatile method. The formulation possesses the attractive feature of producing a symmetric coefficient matrix. In addition, the Galerkin approximation allows standard continuous elements to be used for evaluation of hypersingular integrals. Chapter 11: BEAN: Boundary Element ANalysis program

References in zbMATH (referenced in 29 articles , 1 standard article )

Showing results 1 to 20 of 29.
Sorted by year (citations)

1 2 next

  1. Vodička, Roman; Mantič, Vladislav; Roubíček, Tomáš: Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model (2014)
  2. Andress, James; Ye, Wenjing; Gray, L.J.: Volume integration in the hypersingular boundary integral equation (2013)
  3. Ashrafi, H.; Shariyat, M.; Khalili, S.M.R.; Asemi, K.: A boundary element formulation for the heterogeneous functionally graded viscoelastic structures (2013)
  4. Berger, J.R.; Karageorghis, Andreas: Galerkin formulations of the method of fundamental solutions (2013)
  5. Ebrahimi, S.; Phan, A.-V.: Dynamic analysis of cracks using the SGBEM for elastodynamics in the Laplace-space frequency domain (2013)
  6. Elmabrouk, B.; Berger, J.R.: Boundary element analysis for effective stiffness tensors: effect of fabric tensor determination method (2013)
  7. Távara, Luis; Mantič, Vladislav; Salvadori, Alberto; Gray, Leonard J.; París, Federico: Cohesive-zone-model formulation and implementation using the symmetric Galerkin boundary element method for homogeneous solids (2013)
  8. Elmabrouk, B.; Berger, J.R.; Phan, A.-V.; Gray, L.J.: Apparent stiffness tensors for porous solids using symmetric Galerkin boundary elements (2012)
  9. Távara, L.; Mantič, Vladislav; Ortiz, Jhonny E.; París, Federico: Unique real-variable expressions of the integral kernels in the somigliana stress identity covering all transversely isotropic elastic materials for 3D BEM (2012)
  10. Zakharov, E.V.; Kalinin, A.V.: A method to compute the electric field vector on the surface of the cardiac muscle (2012)
  11. Phan, A.-V.; Guduru, V.; Salvadori, A.; Gray, L.J.: Frequency domain analysis by the exponential window method and SGBEM for elastodynamics (2011)
  12. Sohn, Dongwoo; Lim, Jae Hyuk; Cho, Young-Sam; Kim, Jeong Ho; Im, Seyoung: Finite element analysis of quasistatic crack propagation in brittle media with voids or inclusions (2011)
  13. Távara, L.; Mantič, V.; Graciani, E.; París, F.: BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model (2011)
  14. Vodička, R.; Mantič, V.; París, F.: Two variational formulations for elastic domain decomposition problems solved by SGBEM enforcing coupling conditions in a weak form (2011)
  15. Yang, Lun; Dayal, Kaushik: A completely iterative method for the infinite domain electrostatic problem with nonlinear dielectric media (2011)
  16. Guduru, V.; Phan, A.-V.; Tippur, H.V.: Transient analysis of the dsifs and dynamic $T$-stress for particulate composite materials-numerical vs. Experimental results (2010)
  17. Mousavi, S.E.; Sukumar, N.: Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method (2010)
  18. Nintcheu Fata, S.; Gray, L.J.: On the implementation of 3D Galerkin boundary integral equations (2010)
  19. Phan, A.-V.; Gray, L.J.; Salvadori, A.: Transient analysis of the dynamic stress intensity factors using SGBEM for frequency-domain elastodynamics (2010)
  20. Phan, A.-V.; Gray, L.J.; Salvadori, A.: Symmetric-Galerkin boundary element analysis of the dynamic stress intensity factors in the frequency domain (2010)

1 2 next