Symmetric Galerkin Boundary Element Method. Galerkin Boundary Element Method presents an introduction as well as recent developments of this accurate, powerful, and versatile method. The formulation possesses the attractive feature of producing a symmetric coefficient matrix. In addition, the Galerkin approximation allows standard continuous elements to be used for evaluation of hypersingular integrals. Chapter 11: BEAN: Boundary Element ANalysis program

References in zbMATH (referenced in 46 articles , 1 standard article )

Showing results 1 to 20 of 46.
Sorted by year (citations)

1 2 3 next

  1. Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.: Entanglement entropy in excited states of the quantum Lifshitz model (2017)
  2. Sedaghatjoo, Zeynab; Dehghan, Mehdi; Hosseinzadeh, Hossein: On uniqueness of numerical solution of boundary integral equations with 3-times monotone radial kernels (2017)
  3. Vodička, Roman; Mantič, Vladislav: An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law (2017)
  4. Vodička, Roman; Mantič, Vladislav; Roubíček, Tomáš: Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM (2017)
  5. Hu, Chaolang; He, Xiaoming; Lü, Tao: Euler-Maclaurin expansions and approximations of hypersingular integrals (2015)
  6. Chen, Y.Z.: Evaluation of the T-stress for multiple cracks in an elastic half-plane using singular integral equation and Green’s function method (2014)
  7. Vodička, Roman; Mantič, Vladislav; Roubíček, Tomáš: Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model (2014)
  8. Andress, James; Ye, Wenjing; Gray, L.J.: Volume integration in the hypersingular boundary integral equation (2013)
  9. Ashrafi, H.; Shariyat, M.; Khalili, S.M.R.; Asemi, K.: A boundary element formulation for the heterogeneous functionally graded viscoelastic structures (2013)
  10. Berger, J.R.; Karageorghis, Andreas: Galerkin formulations of the method of fundamental solutions (2013)
  11. Ebrahimi, S.; Phan, A.-V.: Dynamic analysis of cracks using the SGBEM for elastodynamics in the Laplace-space frequency domain (2013)
  12. Elmabrouk, B.; Berger, J.R.: Boundary element analysis for effective stiffness tensors: effect of fabric tensor determination method (2013)
  13. Mukherjee, Subrata; Liu, Yijun: The boundary element method (2013)
  14. Távara, Luis; Mantič, Vladislav; Salvadori, Alberto; Gray, Leonard J.; París, Federico: Cohesive-zone-model formulation and implementation using the symmetric Galerkin boundary element method for homogeneous solids (2013)
  15. Elmabrouk, B.; Berger, J.R.; Phan, A.-V.; Gray, L.J.: Apparent stiffness tensors for porous solids using symmetric Galerkin boundary elements (2012)
  16. Garzon, Maria Luisa; Gray, Leonard J.; Sethian, James A.: Axisymmetric boundary integral formulation for a two-fluid system (2012)
  17. Koehler, Matthew; Yang, Ruoke; Gray, L.J.: Cell-based volume integration for boundary integral analysis (2012)
  18. Távara, L.; Mantič, Vladislav; Ortiz, Jhonny E.; París, Federico: Unique real-variable expressions of the integral kernels in the somigliana stress identity covering all transversely isotropic elastic materials for 3D BEM (2012)
  19. Yu, Hongjun; Wu, Linzhi; Guo, Licheng; Li, Hui; Du, Shanyi: T-stress evaluations for nonhomogeneous materials using an interaction integral method (2012)
  20. Zakharov, E.V.; Kalinin, A.V.: A method to compute the electric field vector on the surface of the cardiac muscle (2012)

1 2 3 next