CADNA: a library for estimating round-off error propagation. The CADNA library enables one to estimate round-off error propagation using a probabilistic approach. With CADNA the numerical quality of any simulation program can be controlled. Furthermore by detecting all the instabilities which may occur at run time, a numerical debugging of the user code can be performed. CADNA provides new numerical types on which round-off errors can be estimated. Slight modifications are required to control a code with CADNA, mainly changes in variable declarations, input and output. This paper describes the features of the CADNA library and shows how to interpret the information it provides concerning round-off error propagation in a code (Source:

References in zbMATH (referenced in 32 articles , 1 standard article )

Showing results 1 to 20 of 32.
Sorted by year (citations)

1 2 next

  1. Fariborzi, Mohammad Ali; Noeiaghdam, Samad: Valid implementation of the Sinc-collocation method to solve linear integral equations by the CADNA library (2019)
  2. Khojasteh Salkuyeh, Davod: Stepsize control for cubic spline interpolation (2017)
  3. Fariborzi Araghi, Mohammad Ali; Barzegar Kelishami, Hasan: Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation (2016)
  4. Graillat, S.; Jézéquel, F.; Picot, R.: Numerical validation of compensated summation algorithms with stochastic arithmetic (2015)
  5. Jézéquel, Fabienne; Langlois, Philippe; Revol, Nathalie: First steps towards more numerical reproducibility (2014)
  6. Alt, Rene; Lamotte, Jean-Luc: Stochastic arithmetic as a tool to study the stability of biological models (2013)
  7. Denis, Christophe; Montan, Sethy: Numerical verification of industrial numerical codes (2012)
  8. Li, Wenbin; Simon, Sven; Kieß, Steffen: On the estimation of numerical error bounds in linear algebra based on discrete stochastic arithmetic (2012)
  9. Graillat, Stef; Jézéquel, Fabienne; Wang, Shiyue; Zhu, Yuxiang: Stochastic arithmetic in multiprecision (2011)
  10. Moulinec, C.; Denis, C.; Pham, C.-T.; Rougé, D.; Hervouet, J.-M.; Razafindrakoto, E.; Barber, R. W.; Emerson, D. R.; Gu, X.-J.: TELEMAC: an efficient hydrodynamics suite for massively parallel architectures (2011)
  11. Jézéquel, Fabienne; Chesneaux, Jean-Marie; Lamotte, Jean-Luc: A new version of the CADNA library for estimating round-off error propagation in Fortran programs (2010) ioport
  12. Khojasteh Salkuyeh, Davod; Toutounian, Faezeh: Optimal iterate of the power and inverse iteration methods (2009)
  13. Jézéquel, Fabienne; Chesneaux, Jean-Marie: CADNA: a library for estimating round-off error propagation (2008)
  14. Salkuyeh, Davod Khojasteh; Toutounian, Faezeh; Yazdi, Hamed Shariat: A procedure with stepsize control for solving (n) one-dimensional IVPs (2008)
  15. Alt, René; Lamotte, Jean-Luc; Markov, Svetoslav: Testing stochastic arithmetic and CESTAC method via polynomial computation (2007)
  16. Jézéquel, F.; Rico, F.; Chesneaux, J.-M.; Charikhi, M.: Reliable computation of a multiple integral involved in the neutron star theory (2006)
  17. Salkuyeh, Davod Khojasteh; Toutounian, Faezeh: Numerical accuracy of a certain class of iterative methods for solving linear system (2006)
  18. Toutounian, Faezeh; Khojasteh Salkuyeh, Davod; Asadi, Bahram: Numerical implementation of the QMR algorithm by using discrete stochastic arithmetic (2005)
  19. Abbasbandy, S.; Fariborzi Araghi, M. A.: The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree (2004)
  20. Kearfott, R. Baker; Neher, Markus; Oishi, Shin’ichi; Rico, Fabien: Libraries, tools, and interactive systems for verified computations four case studies (2004)

1 2 next

Further publications can be found at: