TSPLIB is a library of sample instances for the TSP (and related problem) from various sources and of various types. Instances of the following problem classes are available. Symmetric traveling salesman problem (TSP) Hamiltonian cycle problem (HCP) Asymmetric traveling salesman problem (ATSP) Sequential ordering problem (SOP) Capacitated vehicle routing problem (CVRP)

References in zbMATH (referenced in 553 articles , 1 standard article )

Showing results 1 to 20 of 553.
Sorted by year (citations)

1 2 3 ... 26 27 28 next

  1. Álvarez-Miranda, Eduardo; Luipersbeck, Martin; Sinnl, Markus: Gotta (efficiently) catch them all: Pokémon GO meets orienteering problems (2018)
  2. Burger, M.; Su, Z.; De Schutter, B.: A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem (2018)
  3. Diarrassouba, Ibrahima; Labidi, Mohamed Khalil; Mahjoub, Ali Ridha: A hybrid optimization approach for the Steiner $k$-connected network design problem (2018)
  4. Ferrer, José M.; Martín-Campo, F.Javier; Ortuño, M.Teresa; Pedraza-Martínez, Alfonso J.; Tirado, Gregorio; Vitoriano, Begoña: Multi-criteria optimization for last mile distribution of disaster relief aid: test cases and applications (2018)
  5. Nam, N.M.; Geremew, W.; Reynolds, S.; Tran, T.: Nesterov’s smoothing technique and minimizing differences of convex functions for hierarchical clustering (2018)
  6. Van Cauwelaert, Sascha; Lombardi, Michele; Schaus, Pierre: How efficient is a global constraint in practice? A fair experimental framework (2018)
  7. Baldacci, Roberto; Hill, Alessandro; Hoshino, Edna A.; Lim, Andrew: Pricing strategies for capacitated ring-star problems based on dynamic programming algorithms (2017)
  8. Fischer, Anja; Hungerländer, Philipp: The traveling salesman problem on grids with forbidden neighborhoods (2017)
  9. García, Lucas; Talaván, Pedro M.; Yáñez, Javier: Improving the Hopfield model performance when applied to the traveling salesman problem. A divide-and-conquer scheme (2017)
  10. García-Nové, Eva M.; Alcaraz, Javier; Landete, Mercedes; Monge, Juan F.; Puerto, Justo: Rank aggregation in cyclic sequences (2017)
  11. Genova, Kyle; Williamson, David P.: An experimental evaluation of the best-of-many Christofides’ algorithm for the traveling salesman problem (2017)
  12. Hansen, Pierre; Mladenović, Nenad; Todosijević, Raca; Hanafi, Saïd: Variable neighborhood search: basics and variants (2017)
  13. Hungerländer, Philipp: New semidefinite programming relaxations for the linear ordering and the traveling salesman problem (2017)
  14. Kalmár-Nagy, Tamás; Giardini, Giovanni; Bak, Bendegúz Dezso: The multiagent planning problem (2017)
  15. Karmitsa, Napsu; Bagirov, Adil M.; Taheri, Sona: New diagonal bundle method for clustering problems in large data sets (2017)
  16. Mjirda, Anis; Todosijević, Raca; Hanafi, Saïd; Hansen, Pierre; Mladenović, Nenad: Sequential variable neighborhood descent variants: an empirical study on the traveling salesman problem (2017)
  17. Moeini, Asghar: Identification of unidentified equality constraints for integer programming problems (2017)
  18. Ostrowski, Krzysztof; Karbowska-Chilinska, Joanna; Koszelew, Jolanta; Zabielski, Pawel: Evolution-inspired local improvement algorithm solving orienteering problem (2017)
  19. Oswin, Aichholzer; Fischer, Anja; Fischer, Frank; Meier, J.Fabian; Pferschy, Ulrich; Pilz, Alexander; Staněk, Rostislav: Minimization and maximization versions of the quadratic travelling salesman problem (2017)
  20. Pferschy, Ulrich; Staněk, Rostislav: Generating subtour elimination constraints for the TSP from pure integer solutions (2017)

1 2 3 ... 26 27 28 next

Further publications can be found at: http://comopt.ifi.uni-heidelberg.de/publications/index.html