TSPLIB is a library of sample instances for the TSP (and related problem) from various sources and of various types. Instances of the following problem classes are available. Symmetric traveling salesman problem (TSP) Hamiltonian cycle problem (HCP) Asymmetric traveling salesman problem (ATSP) Sequential ordering problem (SOP) Capacitated vehicle routing problem (CVRP)

References in zbMATH (referenced in 470 articles , 1 standard article )

Showing results 1 to 20 of 470.
Sorted by year (citations)

1 2 3 ... 22 23 24 next

  1. Bian, Zhengbing; Gu, Qian-Ping; Zhu, Mingzhe: Practical algorithms for branch-decompositions of planar graphs (2016)
  2. Büttner, Sabine; Krumke, Sven O.: Robust optimization for routing problems on trees (2016)
  3. Buzna, Ľuboš; Koháni, Michal; Janáček, Jaroslav: An approximative lexicographic MIN-MAX approach to the discrete facility location problem (2016)
  4. Castro de Andrade, Rafael: New formulations for the elementary shortest-path problem visiting a given set of nodes (2016)
  5. Leitner, Markus: Integer programming models and branch-and-cut approaches to generalized $\0,1,2$-survivable network design problems$ (2016)
  6. Subramanyam, Anirudh; Gounaris, Chrysanthos E.: A branch-and-cut framework for the consistent traveling salesman problem (2016)
  7. Wang, Yong; Remmel, Jeffrey B.: A binomial distribution model for the traveling salesman problem based on frequency quadrilaterals (2016)
  8. Borna, Keivan; Khezri, Razieh: A combination of genetic algorithm and particle swarm optimization method for solving traveling salesman problem (2015)
  9. Brusco, Michael J.; Steinley, Douglas: Affinity propagation and uncapacitated facility location problems (2015)
  10. Ceberio, Josu; Irurozki, Ekhine; Mendiburu, Alexander; Lozano, Jose A.: A review of distances for the Mallows and generalized Mallows estimation of distribution algorithms (2015)
  11. Helsgaun, Keld: Solving the equality generalized traveling salesman problem using the Lin-Kernighan-Helsgaun algorithm (2015)
  12. Hoos, Holger H.; Stützle, Thomas: On the empirical time complexity of finding optimal solutions vs proving optimality for Euclidean TSP instances (2015)
  13. Hungerländer, P.: A semidefinite optimization approach to the target visitation problem (2015)
  14. Paparrizos, Konstantinos; Samaras, Nikolaos; Sifaleras, Angelo: Exterior point simplex-type algorithms for linear and network optimization problems (2015)
  15. Stieber, Anke; Fügenschuh, Armin; Epp, Maria; Knapp, Matthias; Rothe, Hendrik: The multiple traveling salesmen problem with moving targets (2015)
  16. Baniasadi, Pouya; Ejov, Vladimir; Filar, Jerzy A.; Haythorpe, Michael; Rossomakhine, Serguei: Deterministic “snakes and ladders” heuristic for the Hamiltonian cycle problem (2014)
  17. Bektaş, Tolga; Gouveia, Luis: Requiem for the Miller-Tucker-Zemlin subtour elimination constraints? (2014)
  18. Blanquero, Rafael; Carrizosa, Emilio; Nogales-Gómez, Amaya; Plastria, Frank: Single-facility huff location problems on networks (2014)
  19. Dowlatshahi, Mohammad Bagher; Nezamabadi-pour, Hossein; Mashinchi, Mashaallah: A discrete gravitational search algorithm for solving combinatorial optimization problems (2014)
  20. Englert, Matthias; Röglin, Heiko; Vöcking, Berthold: Worst case and probabilistic analysis of the 2-opt algorithm for the TSP (2014)

1 2 3 ... 22 23 24 next

Further publications can be found at: http://comopt.ifi.uni-heidelberg.de/publications/index.html