TSPLIB

TSPLIB is a library of sample instances for the TSP (and related problem) from various sources and of various types. Instances of the following problem classes are available. Symmetric traveling salesman problem (TSP) Hamiltonian cycle problem (HCP) Asymmetric traveling salesman problem (ATSP) Sequential ordering problem (SOP) Capacitated vehicle routing problem (CVRP)


References in zbMATH (referenced in 530 articles , 1 standard article )

Showing results 1 to 20 of 530.
Sorted by year (citations)

1 2 3 ... 25 26 27 next

  1. Álvarez-Miranda, Eduardo; Luipersbeck, Martin; Sinnl, Markus: Gotta (efficiently) catch them all: Pokémon GO meets orienteering problems (2018)
  2. Fischer, Anja; Hungerländer, Philipp: The traveling salesman problem on grids with forbidden neighborhoods (2017)
  3. García-Nové, Eva M.; Alcaraz, Javier; Landete, Mercedes; Monge, Juan F.; Puerto, Justo: Rank aggregation in cyclic sequences (2017)
  4. Genova, Kyle; Williamson, David P.: An experimental evaluation of the best-of-many Christofides’ algorithm for the traveling salesman problem (2017)
  5. Hungerländer, Philipp: New semidefinite programming relaxations for the linear ordering and the traveling salesman problem (2017)
  6. Kalmár-Nagy, Tamás; Giardini, Giovanni; Bak, Bendegúz Dezso: The multiagent planning problem (2017)
  7. Mjirda, Anis; Todosijević, Raca; Hanafi, Saïd; Hansen, Pierre; Mladenović, Nenad: Sequential variable neighborhood descent variants: an empirical study on the traveling salesman problem (2017)
  8. Ostrowski, Krzysztof; Karbowska-Chilinska, Joanna; Koszelew, Jolanta; Zabielski, Pawel: Evolution-inspired local improvement algorithm solving orienteering problem (2017)
  9. Oswin, Aichholzer; Fischer, Anja; Fischer, Frank; Meier, J.Fabian; Pferschy, Ulrich; Pilz, Alexander; Staněk, Rostislav: Minimization and maximization versions of the quadratic travelling salesman problem (2017)
  10. Pferschy, Ulrich; Staněk, Rostislav: Generating subtour elimination constraints for the TSP from pure integer solutions (2017)
  11. Sakiyama, Tomoko; Arizono, Ikuo: Can the agent with limited information solve travelling salesman problem? (2017)
  12. Sattari, Sattar; Izadi, Mohammad: An exact algorithm for the minimum dilation triangulation problem (2017)
  13. Sundar, Kaarthik; Rathinam, Sivakumar: Multiple depot ring star problem: a polyhedral study and an exact algorithm (2017)
  14. Turkensteen, Marcel; Malyshev, Dmitry; Goldengorin, Boris; Pardalos, Panos M.: The reduction of computation times of upper and lower tolerances for selected combinatorial optimization problems (2017)
  15. Bian, Zhengbing; Gu, Qian-Ping; Zhu, Mingzhe: Practical algorithms for branch-decompositions of planar graphs (2016)
  16. Blanquero, Rafael; Carrizosa, Emilio; G.-Tóth, Boglárka; Nogales-Gómez, Amaya: $p$-facility Huff location problem on networks (2016)
  17. Büttner, Sabine; Krumke, Sven O.: Robust optimization for routing problems on trees (2016)
  18. Buzna, Ľuboš; Koháni, Michal; Janáček, Jaroslav: An approximative lexicographic MIN-MAX approach to the discrete facility location problem (2016)
  19. Calvete, Herminia I.; Galé, Carmen; Iranzo, José A.: MEALS: a multiobjective evolutionary algorithm with local search for solving the bi-objective ring star problem (2016)
  20. Castro de Andrade, Rafael: New formulations for the elementary shortest-path problem visiting a given set of nodes (2016)

1 2 3 ... 25 26 27 next


Further publications can be found at: http://comopt.ifi.uni-heidelberg.de/publications/index.html