
PyTorch
 Referenced in 435 articles
[sw20939]
 strong GPU acceleration. PyTorch is a deep learning framework that puts Python first...

TensorFlow
 Referenced in 628 articles
[sw15170]
 purposes of conducting machine learning and deep neural networks research, but the system is general...

Keras
 Referenced in 212 articles
[sw15491]
 Keras: Deep Learning library for Theano and TensorFlow. Keras is a minimalist, highly modular neural ... Keras if you need a deep learning library that: allows for easy and fast prototyping...

DGM
 Referenced in 182 articles
[sw39282]
 deep learning algorithm for solving partial differential equations. Highdimensional PDEs have been a longstanding ... PDEs by approximating the solution with a deep neural network which is trained to satisfy ... Bellman PDE and Burgers’ equation. The deep learning algorithm approximates the general solution ... dimensional space). We call the algorithm a “Deep Galerkin method (DGM)” since it is similar...

darch
 Referenced in 321 articles
[sw11086]
 publications ”A fast learning algorithm for deep belief nets” (G. E. Hinton, S. Osindero...

Tensor2Tensor
 Referenced in 95 articles
[sw26507]
 short, is a library of deep learning models and datasets designed to make deep learning...

DeepXDE
 Referenced in 66 articles
[sw32456]
 DeepXDE: A deep learning library for solving differential equations. Deep learning has achieved remarkable success...

Caffe
 Referenced in 78 articles
[sw17850]
 Caffe is a deep learning framework made with expression, speed, and modularity in mind...

DeepWalk
 Referenced in 62 articles
[sw39604]
 modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk...

PDENet
 Referenced in 63 articles
[sw36963]
 paper, we present an initial attempt to learn evolution PDEs from data. Inspired ... development of neural network designs in deep learning, we propose a new feedforward deep ... proposed PDENet is to learn differential operators by learning convolution kernels (filters), and apply...

torchdiffeq
 Referenced in 59 articles
[sw35082]
 usage of ODE solvers in deep learning applications, see [1]. As the solvers are implemented...

MXNet
 Referenced in 36 articles
[sw20940]
 MXNet is a deep learning framework designed for both efficiency and flexibility. It allows ... MXNet is also more than a deep learning project. It is also a collection ... blue prints and guidelines for building deep learning systems, and interesting insights of DL systems...

DnCNN
 Referenced in 45 articles
[sw39678]
 Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. Discriminative model learning ... embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising...

AlexNet
 Referenced in 470 articles
[sw38522]
 convolutional neural network that is 8 layers deep. You can load a pretrained version ... animals. As a result, the network has learned rich feature representations for a wide range ... more pretrained networks in MATLAB®, see Pretrained Deep Neural Networks...

PointNet
 Referenced in 43 articles
[sw31209]
 PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Point cloud...

DeepLab
 Referenced in 39 articles
[sw15303]
 task of semantic image segmentation with Deep Learning and make three main contributions that ... which feature responses are computed within Deep Convolutional Neural Networks. It also allows...

STL10 dataset
 Referenced in 23 articles
[sw39164]
 recognition dataset for developing unsupervised feature learning, deep learning, selftaught learning algorithms...

FaceNet
 Referenced in 30 articles
[sw21626]
 present a system, called FaceNet, that directly learns a mapping from face images ... feature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding ... intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets...

cuDNN
 Referenced in 14 articles
[sw17848]
 cuDNN: Efficient Primitives for Deep Learning. We present a library of efficient implementations of deep ... learning primitives. Deep learning workloads are computationally intensive, and optimizing their kernels is difficult ... there is no analogous library for deep learning. Without such a library, researchers implementing deep ... BLAS, with optimized routines for deep learning workloads. Our implementation contains routines for GPUs, although...

VAMPnets
 Referenced in 19 articles
[sw32927]
 VAMPnets: Deep learning of molecular kinetics. There is an increasing demand for computing the relevant ... Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks...